The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters

碩士 === 國立新竹教育大學 === 進修部數理教育碩士班(數學組) === 93 === In this thesis, we will investigate the continuation of solution paths for the Brusselator model. We ues the central difference method to investigate the multiple solution paths of the Brusselator model. Moreover, we investigate a Brusselator model to...

Full description

Bibliographic Details
Main Authors: LIU TSUNG CHI, 劉中吉
Other Authors: 簡國清
Format: Others
Language:zh-TW
Published: 2004
Online Access:http://ndltd.ncl.edu.tw/handle/20207229265375286654
id ndltd-TW-093NHCT5480012
record_format oai_dc
spelling ndltd-TW-093NHCT54800122015-10-13T13:01:04Z http://ndltd.ncl.edu.tw/handle/20207229265375286654 The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters 具多參數的BRUSSELATOR模型解路徑之延拓 LIU TSUNG CHI 劉中吉 碩士 國立新竹教育大學 進修部數理教育碩士班(數學組) 93 In this thesis, we will investigate the continuation of solution paths for the Brusselator model. We ues the central difference method to investigate the multiple solution paths of the Brusselator model. Moreover, we investigate a Brusselator model to find solution paths containing bifurcation points, turning points and regular points of the Brusselator model. It will be helpful to understand the qualitative properties in the solutions of the Brusselator model. In this paper, we apply implicit function theorem, central difference method, Newton’s iterative method, secant predictor method, pseudo–arclength continuation method to find the solution paths of the Brusselator model. At the same time, we use numerical methods to find solution paths containing bifurcation points, turning points and regular points and use proper iterative methods to analysis and investigate the continuation of solution paths for the Brusselator model. 簡國清 2004 學位論文 ; thesis 84 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立新竹教育大學 === 進修部數理教育碩士班(數學組) === 93 === In this thesis, we will investigate the continuation of solution paths for the Brusselator model. We ues the central difference method to investigate the multiple solution paths of the Brusselator model. Moreover, we investigate a Brusselator model to find solution paths containing bifurcation points, turning points and regular points of the Brusselator model. It will be helpful to understand the qualitative properties in the solutions of the Brusselator model. In this paper, we apply implicit function theorem, central difference method, Newton’s iterative method, secant predictor method, pseudo–arclength continuation method to find the solution paths of the Brusselator model. At the same time, we use numerical methods to find solution paths containing bifurcation points, turning points and regular points and use proper iterative methods to analysis and investigate the continuation of solution paths for the Brusselator model.
author2 簡國清
author_facet 簡國清
LIU TSUNG CHI
劉中吉
author LIU TSUNG CHI
劉中吉
spellingShingle LIU TSUNG CHI
劉中吉
The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters
author_sort LIU TSUNG CHI
title The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters
title_short The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters
title_full The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters
title_fullStr The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters
title_full_unstemmed The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters
title_sort continuation of solution paths for the brusselator model with multiple parameters
publishDate 2004
url http://ndltd.ncl.edu.tw/handle/20207229265375286654
work_keys_str_mv AT liutsungchi thecontinuationofsolutionpathsforthebrusselatormodelwithmultipleparameters
AT liúzhōngjí thecontinuationofsolutionpathsforthebrusselatormodelwithmultipleparameters
AT liutsungchi jùduōcānshùdebrusselatormóxíngjiělùjìngzhīyántà
AT liúzhōngjí jùduōcānshùdebrusselatormóxíngjiělùjìngzhīyántà
AT liutsungchi continuationofsolutionpathsforthebrusselatormodelwithmultipleparameters
AT liúzhōngjí continuationofsolutionpathsforthebrusselatormodelwithmultipleparameters
_version_ 1717729303067623424