The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters
碩士 === 國立新竹教育大學 === 進修部數理教育碩士班(數學組) === 93 === In this thesis, we will investigate the continuation of solution paths for the Brusselator model. We ues the central difference method to investigate the multiple solution paths of the Brusselator model. Moreover, we investigate a Brusselator model to...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2004
|
Online Access: | http://ndltd.ncl.edu.tw/handle/20207229265375286654 |
id |
ndltd-TW-093NHCT5480012 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-093NHCT54800122015-10-13T13:01:04Z http://ndltd.ncl.edu.tw/handle/20207229265375286654 The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters 具多參數的BRUSSELATOR模型解路徑之延拓 LIU TSUNG CHI 劉中吉 碩士 國立新竹教育大學 進修部數理教育碩士班(數學組) 93 In this thesis, we will investigate the continuation of solution paths for the Brusselator model. We ues the central difference method to investigate the multiple solution paths of the Brusselator model. Moreover, we investigate a Brusselator model to find solution paths containing bifurcation points, turning points and regular points of the Brusselator model. It will be helpful to understand the qualitative properties in the solutions of the Brusselator model. In this paper, we apply implicit function theorem, central difference method, Newton’s iterative method, secant predictor method, pseudo–arclength continuation method to find the solution paths of the Brusselator model. At the same time, we use numerical methods to find solution paths containing bifurcation points, turning points and regular points and use proper iterative methods to analysis and investigate the continuation of solution paths for the Brusselator model. 簡國清 2004 學位論文 ; thesis 84 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立新竹教育大學 === 進修部數理教育碩士班(數學組) === 93 === In this thesis, we will investigate the continuation of solution paths for the Brusselator model. We ues the central difference method to investigate the multiple solution paths of the Brusselator model. Moreover, we investigate a Brusselator model to find solution paths containing bifurcation points, turning points and regular points of the Brusselator model. It will be helpful to understand the qualitative properties in the solutions of the Brusselator model.
In this paper, we apply implicit function theorem, central difference method, Newton’s iterative method, secant predictor method, pseudo–arclength continuation method to find the solution paths of the Brusselator model. At the same time, we use numerical methods to find solution paths containing bifurcation points, turning points and regular points and use proper iterative methods to analysis and investigate the continuation of solution paths for the Brusselator model.
|
author2 |
簡國清 |
author_facet |
簡國清 LIU TSUNG CHI 劉中吉 |
author |
LIU TSUNG CHI 劉中吉 |
spellingShingle |
LIU TSUNG CHI 劉中吉 The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters |
author_sort |
LIU TSUNG CHI |
title |
The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters |
title_short |
The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters |
title_full |
The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters |
title_fullStr |
The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters |
title_full_unstemmed |
The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters |
title_sort |
continuation of solution paths for the brusselator model with multiple parameters |
publishDate |
2004 |
url |
http://ndltd.ncl.edu.tw/handle/20207229265375286654 |
work_keys_str_mv |
AT liutsungchi thecontinuationofsolutionpathsforthebrusselatormodelwithmultipleparameters AT liúzhōngjí thecontinuationofsolutionpathsforthebrusselatormodelwithmultipleparameters AT liutsungchi jùduōcānshùdebrusselatormóxíngjiělùjìngzhīyántà AT liúzhōngjí jùduōcānshùdebrusselatormóxíngjiělùjìngzhīyántà AT liutsungchi continuationofsolutionpathsforthebrusselatormodelwithmultipleparameters AT liúzhōngjí continuationofsolutionpathsforthebrusselatormodelwithmultipleparameters |
_version_ |
1717729303067623424 |