Chaotic Dynamics of a Real Exchange Rate Determination Model and an OLG Model
碩士 === 國立彰化師範大學 === 數學系所 === 93 === In the first part of the thesis, we study some dynamics of the map $$F_{\lambda}(q_{t})=q_{t}+\frac{1}{\lambda}(sq^3_{t}-rq^2_{t}+mq_{t}-n),$$ where $\lambda>0$ is a parameter and $s,r,m,n>0$. It is induced from a model of real exchange rate determination wi...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2005
|
Online Access: | http://ndltd.ncl.edu.tw/handle/11294635170028422446 |
id |
ndltd-TW-093NCUE5479009 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-093NCUE54790092016-06-03T04:13:56Z http://ndltd.ncl.edu.tw/handle/11294635170028422446 Chaotic Dynamics of a Real Exchange Rate Determination Model and an OLG Model 實質匯率決定模型與疊代模型的混沌動態分析 Yung-Ju Lin 林咏儒 碩士 國立彰化師範大學 數學系所 93 In the first part of the thesis, we study some dynamics of the map $$F_{\lambda}(q_{t})=q_{t}+\frac{1}{\lambda}(sq^3_{t}-rq^2_{t}+mq_{t}-n),$$ where $\lambda>0$ is a parameter and $s,r,m,n>0$. It is induced from a model of real exchange rate determination with linear demand functions for imports and exports. If $F_{\lambda}$ has only one fixed point, we prove that the fixed point is globally repelling. If $F_{\lambda}$ has exactly two fixed points, we prove that there exist no periodic point. If $F_{\lambda}$ has three distinct fixed points, we prove that $F_{\lambda}$ is chaotic in sense of Li and Yorke for all sufficiently small $\lambda$. In the second part, we study some dynamics of the map $m_{\alpha,\beta,\sigma,n,A}:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}$ defined by $$m_{\alpha,\beta,\sigma,n,A}(k)= \frac{A(1-\alpha)k^\alpha}{(1+n)\left[1+\beta^{-\sigma}(\alpha A)^{1-\sigma}k^{(\alpha-1)(1-\sigma)}\right]},$$ where $\alpha\in(0,1)$, $\beta>0$, $\sigma>0$, $n\in(-1,\infty)$ and $A>0$ are parameters. It is induced from an OLG model with a Cobb-Douglas production function and a CIES utility function under myopic foresight. For $\beta>\frac{1-\alpha}{\alpha(1+n)}$, we prove that all orbits of $m_{\alpha,\beta,\sigma,n,A}$ are asymptotic to the positive fixed point for all sufficiently large $\sigma$. For $\beta<\frac{1-\alpha}{\alpha(1+n)}$, if $\frac{1-\alpha}{\alpha(1+n)(1+\beta)}<1$ and $(\frac{1-\alpha}{\alpha(1+n)(1+\beta)})^{1+\alpha}<\frac{\beta}{1+\beta}$ we prove that $m_{\alpha,\beta,\sigma,n,A}$ is chaotic in sense of Li and Yorke for all sufficiently large $\sigma$. Ming-Chia Li 李明佳 2005 學位論文 ; thesis 37 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立彰化師範大學 === 數學系所 === 93 === In the first part of the thesis, we study some dynamics of the map
$$F_{\lambda}(q_{t})=q_{t}+\frac{1}{\lambda}(sq^3_{t}-rq^2_{t}+mq_{t}-n),$$
where $\lambda>0$ is a parameter and $s,r,m,n>0$. It is induced from
a model of real exchange rate determination with linear demand
functions for imports and exports.
If $F_{\lambda}$ has only one fixed point, we prove that the fixed
point is globally repelling. If $F_{\lambda}$ has exactly two fixed
points, we prove that there exist no periodic point. If
$F_{\lambda}$ has three distinct fixed points, we prove that
$F_{\lambda}$ is chaotic
in sense of Li and Yorke for all sufficiently small $\lambda$.
In the second part, we study some dynamics of the map
$m_{\alpha,\beta,\sigma,n,A}:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}$ defined by
$$m_{\alpha,\beta,\sigma,n,A}(k)=
\frac{A(1-\alpha)k^\alpha}{(1+n)\left[1+\beta^{-\sigma}(\alpha
A)^{1-\sigma}k^{(\alpha-1)(1-\sigma)}\right]},$$ where
$\alpha\in(0,1)$, $\beta>0$, $\sigma>0$, $n\in(-1,\infty)$ and $A>0$
are parameters. It is induced from an OLG model with a Cobb-Douglas
production function and a CIES utility function under myopic
foresight.
For $\beta>\frac{1-\alpha}{\alpha(1+n)}$, we prove that all orbits
of $m_{\alpha,\beta,\sigma,n,A}$ are asymptotic to the positive
fixed point for all sufficiently large $\sigma$. For
$\beta<\frac{1-\alpha}{\alpha(1+n)}$, if
$\frac{1-\alpha}{\alpha(1+n)(1+\beta)}<1$ and
$(\frac{1-\alpha}{\alpha(1+n)(1+\beta)})^{1+\alpha}<\frac{\beta}{1+\beta}$
we prove that $m_{\alpha,\beta,\sigma,n,A}$ is chaotic in sense of
Li and Yorke for all sufficiently large $\sigma$.
|
author2 |
Ming-Chia Li |
author_facet |
Ming-Chia Li Yung-Ju Lin 林咏儒 |
author |
Yung-Ju Lin 林咏儒 |
spellingShingle |
Yung-Ju Lin 林咏儒 Chaotic Dynamics of a Real Exchange Rate Determination Model and an OLG Model |
author_sort |
Yung-Ju Lin |
title |
Chaotic Dynamics of a Real Exchange Rate Determination Model and an OLG Model |
title_short |
Chaotic Dynamics of a Real Exchange Rate Determination Model and an OLG Model |
title_full |
Chaotic Dynamics of a Real Exchange Rate Determination Model and an OLG Model |
title_fullStr |
Chaotic Dynamics of a Real Exchange Rate Determination Model and an OLG Model |
title_full_unstemmed |
Chaotic Dynamics of a Real Exchange Rate Determination Model and an OLG Model |
title_sort |
chaotic dynamics of a real exchange rate determination model and an olg model |
publishDate |
2005 |
url |
http://ndltd.ncl.edu.tw/handle/11294635170028422446 |
work_keys_str_mv |
AT yungjulin chaoticdynamicsofarealexchangeratedeterminationmodelandanolgmodel AT línyǒngrú chaoticdynamicsofarealexchangeratedeterminationmodelandanolgmodel AT yungjulin shízhìhuìlǜjuédìngmóxíngyǔdiédàimóxíngdehùndùndòngtàifēnxī AT línyǒngrú shízhìhuìlǜjuédìngmóxíngyǔdiédàimóxíngdehùndùndòngtàifēnxī |
_version_ |
1718292819894861824 |