Optimal design of groundwater quality monitoring network using Factorial kriging

碩士 === 國立交通大學 === 土木工程系所 === 93 === In resent studies, geostatistical methods, as Kriging and Co-Kriging, have been applied to design the groundwater monitoring networks. These methods can determine an optimal network based on the spatial variability of a selected variable. However, since a represe...

Full description

Bibliographic Details
Main Authors: Wen Hung Hsu, 許文鴻
Other Authors: Liang Cheng Chang
Format: Others
Language:zh-TW
Published: 2004
Online Access:http://ndltd.ncl.edu.tw/handle/02862609354865627532
id ndltd-TW-093NCTU5015007
record_format oai_dc
spelling ndltd-TW-093NCTU50150072015-10-13T12:56:36Z http://ndltd.ncl.edu.tw/handle/02862609354865627532 Optimal design of groundwater quality monitoring network using Factorial kriging 因子克利金法應用於地下水質監測井網設計之研究 Wen Hung Hsu 許文鴻 碩士 國立交通大學 土木工程系所 93 In resent studies, geostatistical methods, as Kriging and Co-Kriging, have been applied to design the groundwater monitoring networks. These methods can determine an optimal network based on the spatial variability of a selected variable. However, since a representative variable is difficult to define, the conventional geostatistical methods will be difficult to apply directly when the monitoring network is used to monitor multi-variables. Besides, conventional geostatistical methods consider only single geostatistical structure represented by a variogram, and this may not accurately represent the geostatistical structures for an area with multiple regionalization structures. A Factorial Kriging is an integrated methodology consists of Multivariate Variogram Modeling, Principal Component Analysis and Co-Kringing method. Therefore, it can consider multi-scales geostatistical structures and solve a multi-variables problem by using the factor variables as a representative variable. This research develops an optimal design method to solve groundwater network design problems by combining the Factorial Kringing with Genatic Algorithm (GA). The proposed model is applied to design the groundwater monitoring network in Pingtung plain, Taiwan. The design considers nine groundwater quality variables and two scales of geostatistical structure represented by two variograms. One of the variogram is Gaussian type with an effective range of 28.5 km and the other is Spherical type with an effective range of 40 km. The model successfully obtains different optimal network designs with respect to 10, 20 and 30 wells. The study demonstrates that the proposed model can optimally design a complicated groundwater monitoring network that considers multiple groundwater quality variables and multiple scales of geostatistical structures. Liang Cheng Chang Yu Pin Lin 張良正 林裕彬 2004 學位論文 ; thesis 91 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立交通大學 === 土木工程系所 === 93 === In resent studies, geostatistical methods, as Kriging and Co-Kriging, have been applied to design the groundwater monitoring networks. These methods can determine an optimal network based on the spatial variability of a selected variable. However, since a representative variable is difficult to define, the conventional geostatistical methods will be difficult to apply directly when the monitoring network is used to monitor multi-variables. Besides, conventional geostatistical methods consider only single geostatistical structure represented by a variogram, and this may not accurately represent the geostatistical structures for an area with multiple regionalization structures. A Factorial Kriging is an integrated methodology consists of Multivariate Variogram Modeling, Principal Component Analysis and Co-Kringing method. Therefore, it can consider multi-scales geostatistical structures and solve a multi-variables problem by using the factor variables as a representative variable. This research develops an optimal design method to solve groundwater network design problems by combining the Factorial Kringing with Genatic Algorithm (GA). The proposed model is applied to design the groundwater monitoring network in Pingtung plain, Taiwan. The design considers nine groundwater quality variables and two scales of geostatistical structure represented by two variograms. One of the variogram is Gaussian type with an effective range of 28.5 km and the other is Spherical type with an effective range of 40 km. The model successfully obtains different optimal network designs with respect to 10, 20 and 30 wells. The study demonstrates that the proposed model can optimally design a complicated groundwater monitoring network that considers multiple groundwater quality variables and multiple scales of geostatistical structures.
author2 Liang Cheng Chang
author_facet Liang Cheng Chang
Wen Hung Hsu
許文鴻
author Wen Hung Hsu
許文鴻
spellingShingle Wen Hung Hsu
許文鴻
Optimal design of groundwater quality monitoring network using Factorial kriging
author_sort Wen Hung Hsu
title Optimal design of groundwater quality monitoring network using Factorial kriging
title_short Optimal design of groundwater quality monitoring network using Factorial kriging
title_full Optimal design of groundwater quality monitoring network using Factorial kriging
title_fullStr Optimal design of groundwater quality monitoring network using Factorial kriging
title_full_unstemmed Optimal design of groundwater quality monitoring network using Factorial kriging
title_sort optimal design of groundwater quality monitoring network using factorial kriging
publishDate 2004
url http://ndltd.ncl.edu.tw/handle/02862609354865627532
work_keys_str_mv AT wenhunghsu optimaldesignofgroundwaterqualitymonitoringnetworkusingfactorialkriging
AT xǔwénhóng optimaldesignofgroundwaterqualitymonitoringnetworkusingfactorialkriging
AT wenhunghsu yīnzikèlìjīnfǎyīngyòngyúdexiàshuǐzhìjiāncèjǐngwǎngshèjìzhīyánjiū
AT xǔwénhóng yīnzikèlìjīnfǎyīngyòngyúdexiàshuǐzhìjiāncèjǐngwǎngshèjìzhīyánjiū
_version_ 1716869623341645824