Selections for Metric Projection

碩士 === 輔仁大學 === 數學系研究所 === 93 === We consider a metric projection as a piecewise polyhedral multifunction. To see selections of metric projections, we first prove the existence of continuous extremal point selections of piecewise polyhedral multifunctions and quasi-linear selections of quasi-linear...

Full description

Bibliographic Details
Main Authors: Li rung sheng, 李榮陞
Other Authors: 楊南屏
Format: Others
Language:zh-TW
Published: 2005
Online Access:http://ndltd.ncl.edu.tw/handle/91105647580104334269
id ndltd-TW-093FJU00479013
record_format oai_dc
spelling ndltd-TW-093FJU004790132015-10-13T13:04:19Z http://ndltd.ncl.edu.tw/handle/91105647580104334269 Selections for Metric Projection 多值函數之選取 Li rung sheng 李榮陞 碩士 輔仁大學 數學系研究所 93 We consider a metric projection as a piecewise polyhedral multifunction. To see selections of metric projections, we first prove the existence of continuous extremal point selections of piecewise polyhedral multifunctions and quasi-linear selections of quasi-linear multifunctions. The existence of selections to metric projections then follows. Finally, we briefly explore the existence of continuous quasi-linear extremal point selections of metric projections by an example. 楊南屏 2005 學位論文 ; thesis 19 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 輔仁大學 === 數學系研究所 === 93 === We consider a metric projection as a piecewise polyhedral multifunction. To see selections of metric projections, we first prove the existence of continuous extremal point selections of piecewise polyhedral multifunctions and quasi-linear selections of quasi-linear multifunctions. The existence of selections to metric projections then follows. Finally, we briefly explore the existence of continuous quasi-linear extremal point selections of metric projections by an example.
author2 楊南屏
author_facet 楊南屏
Li rung sheng
李榮陞
author Li rung sheng
李榮陞
spellingShingle Li rung sheng
李榮陞
Selections for Metric Projection
author_sort Li rung sheng
title Selections for Metric Projection
title_short Selections for Metric Projection
title_full Selections for Metric Projection
title_fullStr Selections for Metric Projection
title_full_unstemmed Selections for Metric Projection
title_sort selections for metric projection
publishDate 2005
url http://ndltd.ncl.edu.tw/handle/91105647580104334269
work_keys_str_mv AT lirungsheng selectionsformetricprojection
AT lǐróngshēng selectionsformetricprojection
AT lirungsheng duōzhíhánshùzhīxuǎnqǔ
AT lǐróngshēng duōzhíhánshùzhīxuǎnqǔ
_version_ 1717730255025733632