Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution

碩士 === 東吳大學 === 商用數學系 === 92 === The financial return data has the character of fat tail. If we fit the financial return data in Normal distribution, the Value-at-Risk(VaR) will be misvalued. The multivariate normal-inverse Gaussian (MNIG) distribution arises as a normal variance-mean mixture with a...

Full description

Bibliographic Details
Main Authors: Szu-Fang Wang, 王思芳
Other Authors: Yi-Ping Chang
Format: Others
Language:zh-TW
Published: 2004
Online Access:http://ndltd.ncl.edu.tw/handle/15032720497214692153
id ndltd-TW-092SCU00314018
record_format oai_dc
spelling ndltd-TW-092SCU003140182015-10-13T13:31:23Z http://ndltd.ncl.edu.tw/handle/15032720497214692153 Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution 多變量NIG分配之投資組合風險值計算 Szu-Fang Wang 王思芳 碩士 東吳大學 商用數學系 92 The financial return data has the character of fat tail. If we fit the financial return data in Normal distribution, the Value-at-Risk(VaR) will be misvalued. The multivariate normal-inverse Gaussian (MNIG) distribution arises as a normal variance-mean mixture with an inverse Gaussian (IG) mixing distribution. Its five parameters cam describe the kurtosis, location, scale, asymmetric and correlation of the data. Due to the complexity of the likelihood of MNIG distribution, direct maximization is difficult. An EM algorithm is provided for the maximum likelihood estimation (MLE) of the MNIG distribution. Beside ,this article fit the portfolio of financial return data in the MNIG distribution, multivariate normal distribution and multivariate student-T distribution. The result shows that the MNIG distribution can fit very well and estimate the VaR precisely. Yi-Ping Chang Ming-Chin Hung 張揖平 洪明欽 2004 學位論文 ; thesis 52 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 東吳大學 === 商用數學系 === 92 === The financial return data has the character of fat tail. If we fit the financial return data in Normal distribution, the Value-at-Risk(VaR) will be misvalued. The multivariate normal-inverse Gaussian (MNIG) distribution arises as a normal variance-mean mixture with an inverse Gaussian (IG) mixing distribution. Its five parameters cam describe the kurtosis, location, scale, asymmetric and correlation of the data. Due to the complexity of the likelihood of MNIG distribution, direct maximization is difficult. An EM algorithm is provided for the maximum likelihood estimation (MLE) of the MNIG distribution. Beside ,this article fit the portfolio of financial return data in the MNIG distribution, multivariate normal distribution and multivariate student-T distribution. The result shows that the MNIG distribution can fit very well and estimate the VaR precisely.
author2 Yi-Ping Chang
author_facet Yi-Ping Chang
Szu-Fang Wang
王思芳
author Szu-Fang Wang
王思芳
spellingShingle Szu-Fang Wang
王思芳
Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution
author_sort Szu-Fang Wang
title Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution
title_short Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution
title_full Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution
title_fullStr Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution
title_full_unstemmed Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution
title_sort value-at-risk approximation of multivariate normal-inverse gaussian distribution
publishDate 2004
url http://ndltd.ncl.edu.tw/handle/15032720497214692153
work_keys_str_mv AT szufangwang valueatriskapproximationofmultivariatenormalinversegaussiandistribution
AT wángsīfāng valueatriskapproximationofmultivariatenormalinversegaussiandistribution
AT szufangwang duōbiànliàngnigfēnpèizhītóuzīzǔhéfēngxiǎnzhíjìsuàn
AT wángsīfāng duōbiànliàngnigfēnpèizhītóuzīzǔhéfēngxiǎnzhíjìsuàn
_version_ 1717737182345560064