Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution
碩士 === 東吳大學 === 商用數學系 === 92 === The financial return data has the character of fat tail. If we fit the financial return data in Normal distribution, the Value-at-Risk(VaR) will be misvalued. The multivariate normal-inverse Gaussian (MNIG) distribution arises as a normal variance-mean mixture with a...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2004
|
Online Access: | http://ndltd.ncl.edu.tw/handle/15032720497214692153 |
id |
ndltd-TW-092SCU00314018 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-092SCU003140182015-10-13T13:31:23Z http://ndltd.ncl.edu.tw/handle/15032720497214692153 Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution 多變量NIG分配之投資組合風險值計算 Szu-Fang Wang 王思芳 碩士 東吳大學 商用數學系 92 The financial return data has the character of fat tail. If we fit the financial return data in Normal distribution, the Value-at-Risk(VaR) will be misvalued. The multivariate normal-inverse Gaussian (MNIG) distribution arises as a normal variance-mean mixture with an inverse Gaussian (IG) mixing distribution. Its five parameters cam describe the kurtosis, location, scale, asymmetric and correlation of the data. Due to the complexity of the likelihood of MNIG distribution, direct maximization is difficult. An EM algorithm is provided for the maximum likelihood estimation (MLE) of the MNIG distribution. Beside ,this article fit the portfolio of financial return data in the MNIG distribution, multivariate normal distribution and multivariate student-T distribution. The result shows that the MNIG distribution can fit very well and estimate the VaR precisely. Yi-Ping Chang Ming-Chin Hung 張揖平 洪明欽 2004 學位論文 ; thesis 52 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 東吳大學 === 商用數學系 === 92 === The financial return data has the character of fat tail. If we fit the financial return data in Normal distribution, the Value-at-Risk(VaR) will be misvalued. The multivariate normal-inverse Gaussian (MNIG) distribution arises as a normal variance-mean mixture with an inverse Gaussian (IG) mixing distribution. Its five parameters cam describe the kurtosis, location, scale, asymmetric and correlation of the data. Due to the complexity of the likelihood of MNIG distribution, direct maximization is difficult. An EM algorithm is provided for the maximum likelihood estimation (MLE) of the MNIG distribution. Beside ,this article fit the portfolio of financial return data in the MNIG distribution, multivariate normal distribution and multivariate student-T distribution. The result shows that the MNIG distribution can fit very well and estimate the VaR precisely.
|
author2 |
Yi-Ping Chang |
author_facet |
Yi-Ping Chang Szu-Fang Wang 王思芳 |
author |
Szu-Fang Wang 王思芳 |
spellingShingle |
Szu-Fang Wang 王思芳 Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution |
author_sort |
Szu-Fang Wang |
title |
Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution |
title_short |
Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution |
title_full |
Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution |
title_fullStr |
Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution |
title_full_unstemmed |
Value-at-Risk approximation of multivariate normal-inverse Gaussian distribution |
title_sort |
value-at-risk approximation of multivariate normal-inverse gaussian distribution |
publishDate |
2004 |
url |
http://ndltd.ncl.edu.tw/handle/15032720497214692153 |
work_keys_str_mv |
AT szufangwang valueatriskapproximationofmultivariatenormalinversegaussiandistribution AT wángsīfāng valueatriskapproximationofmultivariatenormalinversegaussiandistribution AT szufangwang duōbiànliàngnigfēnpèizhītóuzīzǔhéfēngxiǎnzhíjìsuàn AT wángsīfāng duōbiànliàngnigfēnpèizhītóuzīzǔhéfēngxiǎnzhíjìsuàn |
_version_ |
1717737182345560064 |