Bayesian analysis for non-gaussian moving averages

碩士 === 國立清華大學 === 統計學研究所 === 92 === A method for estimating parameters in non-Gaussian moving average models is proposed based on Bayesian analysis. In the conventional approach, the Gaussian likelihood is used for parameter estimation (QMLE). However, it may not be appropriate when the process is...

Full description

Bibliographic Details
Main Authors: Mu-Chi Peng, 彭睦棋
Other Authors: Nan-Jung Hsu
Format: Others
Language:zh-TW
Published: 2004
Online Access:http://ndltd.ncl.edu.tw/handle/28929403334833357670
id ndltd-TW-092NTHU5337014
record_format oai_dc
spelling ndltd-TW-092NTHU53370142015-10-13T13:08:03Z http://ndltd.ncl.edu.tw/handle/28929403334833357670 Bayesian analysis for non-gaussian moving averages 非高斯之移動平均過程的貝氏參數估計 Mu-Chi Peng 彭睦棋 碩士 國立清華大學 統計學研究所 92 A method for estimating parameters in non-Gaussian moving average models is proposed based on Bayesian analysis. In the conventional approach, the Gaussian likelihood is used for parameter estimation (QMLE). However, it may not be appropriate when the process is non-invertible. Huang and Pawitan (2000) proposed another likelihood-based estimation method using Laplace likelihood (H&P). Comparing among these three methods, the empirical results show that the Bayesian analysis performs better than QMLE and H&P in terms of smaller root mean square error no matter the MA process is invertible or non-invertible. Nan-Jung Hsu 徐南蓉 2004 學位論文 ; thesis 30 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立清華大學 === 統計學研究所 === 92 === A method for estimating parameters in non-Gaussian moving average models is proposed based on Bayesian analysis. In the conventional approach, the Gaussian likelihood is used for parameter estimation (QMLE). However, it may not be appropriate when the process is non-invertible. Huang and Pawitan (2000) proposed another likelihood-based estimation method using Laplace likelihood (H&P). Comparing among these three methods, the empirical results show that the Bayesian analysis performs better than QMLE and H&P in terms of smaller root mean square error no matter the MA process is invertible or non-invertible.
author2 Nan-Jung Hsu
author_facet Nan-Jung Hsu
Mu-Chi Peng
彭睦棋
author Mu-Chi Peng
彭睦棋
spellingShingle Mu-Chi Peng
彭睦棋
Bayesian analysis for non-gaussian moving averages
author_sort Mu-Chi Peng
title Bayesian analysis for non-gaussian moving averages
title_short Bayesian analysis for non-gaussian moving averages
title_full Bayesian analysis for non-gaussian moving averages
title_fullStr Bayesian analysis for non-gaussian moving averages
title_full_unstemmed Bayesian analysis for non-gaussian moving averages
title_sort bayesian analysis for non-gaussian moving averages
publishDate 2004
url http://ndltd.ncl.edu.tw/handle/28929403334833357670
work_keys_str_mv AT muchipeng bayesiananalysisfornongaussianmovingaverages
AT péngmùqí bayesiananalysisfornongaussianmovingaverages
AT muchipeng fēigāosīzhīyídòngpíngjūnguòchéngdebèishìcānshùgūjì
AT péngmùqí fēigāosīzhīyídòngpíngjūnguòchéngdebèishìcānshùgūjì
_version_ 1717732063979765760