The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process

碩士 === 國立中山大學 === 經濟學研究所 === 92 === In this paper, we derive the asymptotic distribution of the Augmented Dickey-Fuller t Test statistics, t_{ADF}, against a generalized fractional integrated process (for example: ARFIMA(p,1+d,q) ,|d|<1/2,and p, q be positive integer) by using the propositions o...

Full description

Bibliographic Details
Main Authors: Chien-Min Chuang, 莊建民
Other Authors: Chingnun Lee
Format: Others
Language:en_US
Published: 2004
Online Access:http://ndltd.ncl.edu.tw/handle/42184120549188372665
id ndltd-TW-092NSYS5389006
record_format oai_dc
spelling ndltd-TW-092NSYS53890062015-10-13T13:05:08Z http://ndltd.ncl.edu.tw/handle/42184120549188372665 The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process 在一般化分數單根下ADF檢定統計量之極限分配 Chien-Min Chuang 莊建民 碩士 國立中山大學 經濟學研究所 92 In this paper, we derive the asymptotic distribution of the Augmented Dickey-Fuller t Test statistics, t_{ADF}, against a generalized fractional integrated process (for example: ARFIMA(p,1+d,q) ,|d|<1/2,and p, q be positive integer) by using the propositions of Lee and Shie (2003). Then we discuss why the power decreases with the increasing lags in the same and large enough sample size T when d is unequal to 0. We also get that the estimator of the disturbance''s variance, S^2, has slightly increasing bias with increasing k. Finally, we support the conclusion by the Monte Carlo experiments. Chingnun Lee 李慶男 2004 學位論文 ; thesis 48 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中山大學 === 經濟學研究所 === 92 === In this paper, we derive the asymptotic distribution of the Augmented Dickey-Fuller t Test statistics, t_{ADF}, against a generalized fractional integrated process (for example: ARFIMA(p,1+d,q) ,|d|<1/2,and p, q be positive integer) by using the propositions of Lee and Shie (2003). Then we discuss why the power decreases with the increasing lags in the same and large enough sample size T when d is unequal to 0. We also get that the estimator of the disturbance''s variance, S^2, has slightly increasing bias with increasing k. Finally, we support the conclusion by the Monte Carlo experiments.
author2 Chingnun Lee
author_facet Chingnun Lee
Chien-Min Chuang
莊建民
author Chien-Min Chuang
莊建民
spellingShingle Chien-Min Chuang
莊建民
The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process
author_sort Chien-Min Chuang
title The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process
title_short The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process
title_full The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process
title_fullStr The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process
title_full_unstemmed The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process
title_sort asymptotic distribution of the augmented dickey-fuller t test under a generally fractionally-integrated process
publishDate 2004
url http://ndltd.ncl.edu.tw/handle/42184120549188372665
work_keys_str_mv AT chienminchuang theasymptoticdistributionoftheaugmenteddickeyfullerttestunderagenerallyfractionallyintegratedprocess
AT zhuāngjiànmín theasymptoticdistributionoftheaugmenteddickeyfullerttestunderagenerallyfractionallyintegratedprocess
AT chienminchuang zàiyībānhuàfēnshùdāngēnxiàadfjiǎndìngtǒngjìliàngzhījíxiànfēnpèi
AT zhuāngjiànmín zàiyībānhuàfēnshùdāngēnxiàadfjiǎndìngtǒngjìliàngzhījíxiànfēnpèi
AT chienminchuang asymptoticdistributionoftheaugmenteddickeyfullerttestunderagenerallyfractionallyintegratedprocess
AT zhuāngjiànmín asymptoticdistributionoftheaugmenteddickeyfullerttestunderagenerallyfractionallyintegratedprocess
_version_ 1717731541114683392