The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process
碩士 === 國立中山大學 === 經濟學研究所 === 92 === In this paper, we derive the asymptotic distribution of the Augmented Dickey-Fuller t Test statistics, t_{ADF}, against a generalized fractional integrated process (for example: ARFIMA(p,1+d,q) ,|d|<1/2,and p, q be positive integer) by using the propositions o...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2004
|
Online Access: | http://ndltd.ncl.edu.tw/handle/42184120549188372665 |
id |
ndltd-TW-092NSYS5389006 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-092NSYS53890062015-10-13T13:05:08Z http://ndltd.ncl.edu.tw/handle/42184120549188372665 The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process 在一般化分數單根下ADF檢定統計量之極限分配 Chien-Min Chuang 莊建民 碩士 國立中山大學 經濟學研究所 92 In this paper, we derive the asymptotic distribution of the Augmented Dickey-Fuller t Test statistics, t_{ADF}, against a generalized fractional integrated process (for example: ARFIMA(p,1+d,q) ,|d|<1/2,and p, q be positive integer) by using the propositions of Lee and Shie (2003). Then we discuss why the power decreases with the increasing lags in the same and large enough sample size T when d is unequal to 0. We also get that the estimator of the disturbance''s variance, S^2, has slightly increasing bias with increasing k. Finally, we support the conclusion by the Monte Carlo experiments. Chingnun Lee 李慶男 2004 學位論文 ; thesis 48 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中山大學 === 經濟學研究所 === 92 === In this paper, we derive the asymptotic distribution of the Augmented Dickey-Fuller t Test statistics, t_{ADF}, against a generalized fractional integrated process (for example: ARFIMA(p,1+d,q) ,|d|<1/2,and p, q be positive integer) by using the propositions of Lee and Shie (2003).
Then we discuss why the power decreases with the increasing lags in the same and large enough sample size T when d is unequal to 0. We also get that the estimator of the disturbance''s variance, S^2, has slightly increasing bias with increasing k. Finally, we support the conclusion by the Monte Carlo experiments.
|
author2 |
Chingnun Lee |
author_facet |
Chingnun Lee Chien-Min Chuang 莊建民 |
author |
Chien-Min Chuang 莊建民 |
spellingShingle |
Chien-Min Chuang 莊建民 The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process |
author_sort |
Chien-Min Chuang |
title |
The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process |
title_short |
The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process |
title_full |
The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process |
title_fullStr |
The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process |
title_full_unstemmed |
The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process |
title_sort |
asymptotic distribution of the augmented dickey-fuller t test under a generally fractionally-integrated process |
publishDate |
2004 |
url |
http://ndltd.ncl.edu.tw/handle/42184120549188372665 |
work_keys_str_mv |
AT chienminchuang theasymptoticdistributionoftheaugmenteddickeyfullerttestunderagenerallyfractionallyintegratedprocess AT zhuāngjiànmín theasymptoticdistributionoftheaugmenteddickeyfullerttestunderagenerallyfractionallyintegratedprocess AT chienminchuang zàiyībānhuàfēnshùdāngēnxiàadfjiǎndìngtǒngjìliàngzhījíxiànfēnpèi AT zhuāngjiànmín zàiyībānhuàfēnshùdāngēnxiàadfjiǎndìngtǒngjìliàngzhījíxiànfēnpèi AT chienminchuang asymptoticdistributionoftheaugmenteddickeyfullerttestunderagenerallyfractionallyintegratedprocess AT zhuāngjiànmín asymptoticdistributionoftheaugmenteddickeyfullerttestunderagenerallyfractionallyintegratedprocess |
_version_ |
1717731541114683392 |