計算 Ck/Cm/1 的機率分配之不變子空間

碩士 === 國立政治大學 === 應用數學研究所 === 92 === In this thesis, we analyze the single server queueing system Ck/Cm/1. We construct a general solution space of the vector for stationary probability and describe the solution space in terms of singularities and vectors of the fundamental matrix polynomial Q(w)...

Full description

Bibliographic Details
Main Authors: Liu,Hsin-Yi, 劉心怡
Other Authors: Hsing, Luh
Format: Others
Language:en_US
Published: 2004
Online Access:http://ndltd.ncl.edu.tw/handle/35059445181813127363
id ndltd-TW-092NCCU5507006
record_format oai_dc
spelling ndltd-TW-092NCCU55070062015-10-13T16:23:07Z http://ndltd.ncl.edu.tw/handle/35059445181813127363 計算 Ck/Cm/1 的機率分配之不變子空間 InvariantSubspaceofSolvingCk/Cm/1 Liu,Hsin-Yi 劉心怡 碩士 國立政治大學 應用數學研究所 92 In this thesis, we analyze the single server queueing system Ck/Cm/1. We construct a general solution space of the vector for stationary probability and describe the solution space in terms of singularities and vectors of the fundamental matrix polynomial Q(w). There is a relation between the singularities of Q(w) and the roots of the characteristic polynomial involving the Laplace transforms of the interarrival and service times distributions. In the Ek/Em/1 queueing system, it is proved that the roots of the characteristic polynomial are distinct if the arrival and service rates are real. When multiple roots occur, one needs to solve a set of equations of matrix polynomials. As a result, we establish a procedure for describing those vectors used in the expression of saturated probability as linear combination of Kronecker products. Hsing, Luh 陸行 2004 學位論文 ; thesis 52 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立政治大學 === 應用數學研究所 === 92 === In this thesis, we analyze the single server queueing system Ck/Cm/1. We construct a general solution space of the vector for stationary probability and describe the solution space in terms of singularities and vectors of the fundamental matrix polynomial Q(w). There is a relation between the singularities of Q(w) and the roots of the characteristic polynomial involving the Laplace transforms of the interarrival and service times distributions. In the Ek/Em/1 queueing system, it is proved that the roots of the characteristic polynomial are distinct if the arrival and service rates are real. When multiple roots occur, one needs to solve a set of equations of matrix polynomials. As a result, we establish a procedure for describing those vectors used in the expression of saturated probability as linear combination of Kronecker products.
author2 Hsing, Luh
author_facet Hsing, Luh
Liu,Hsin-Yi
劉心怡
author Liu,Hsin-Yi
劉心怡
spellingShingle Liu,Hsin-Yi
劉心怡
計算 Ck/Cm/1 的機率分配之不變子空間
author_sort Liu,Hsin-Yi
title 計算 Ck/Cm/1 的機率分配之不變子空間
title_short 計算 Ck/Cm/1 的機率分配之不變子空間
title_full 計算 Ck/Cm/1 的機率分配之不變子空間
title_fullStr 計算 Ck/Cm/1 的機率分配之不變子空間
title_full_unstemmed 計算 Ck/Cm/1 的機率分配之不變子空間
title_sort 計算 ck/cm/1 的機率分配之不變子空間
publishDate 2004
url http://ndltd.ncl.edu.tw/handle/35059445181813127363
work_keys_str_mv AT liuhsinyi jìsuànckcm1dejīlǜfēnpèizhībùbiànzikōngjiān
AT liúxīnyí jìsuànckcm1dejīlǜfēnpèizhībùbiànzikōngjiān
AT liuhsinyi invariantsubspaceofsolvingckcm1
AT liúxīnyí invariantsubspaceofsolvingckcm1
_version_ 1717770803194363904