計算 Ck/Cm/1 的機率分配之不變子空間
碩士 === 國立政治大學 === 應用數學研究所 === 92 === In this thesis, we analyze the single server queueing system Ck/Cm/1. We construct a general solution space of the vector for stationary probability and describe the solution space in terms of singularities and vectors of the fundamental matrix polynomial Q(w)...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2004
|
Online Access: | http://ndltd.ncl.edu.tw/handle/35059445181813127363 |
id |
ndltd-TW-092NCCU5507006 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-092NCCU55070062015-10-13T16:23:07Z http://ndltd.ncl.edu.tw/handle/35059445181813127363 計算 Ck/Cm/1 的機率分配之不變子空間 InvariantSubspaceofSolvingCk/Cm/1 Liu,Hsin-Yi 劉心怡 碩士 國立政治大學 應用數學研究所 92 In this thesis, we analyze the single server queueing system Ck/Cm/1. We construct a general solution space of the vector for stationary probability and describe the solution space in terms of singularities and vectors of the fundamental matrix polynomial Q(w). There is a relation between the singularities of Q(w) and the roots of the characteristic polynomial involving the Laplace transforms of the interarrival and service times distributions. In the Ek/Em/1 queueing system, it is proved that the roots of the characteristic polynomial are distinct if the arrival and service rates are real. When multiple roots occur, one needs to solve a set of equations of matrix polynomials. As a result, we establish a procedure for describing those vectors used in the expression of saturated probability as linear combination of Kronecker products. Hsing, Luh 陸行 2004 學位論文 ; thesis 52 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立政治大學 === 應用數學研究所 === 92 === In this thesis, we analyze the single server queueing system
Ck/Cm/1. We construct a general solution space of the vector for stationary probability and describe the solution space in terms of singularities and vectors of the fundamental matrix polynomial Q(w). There is a relation between the singularities of Q(w) and the roots of the characteristic polynomial
involving the Laplace transforms of the interarrival and service
times distributions. In the Ek/Em/1 queueing system, it is proved that the roots of the characteristic polynomial are
distinct if the arrival and service rates are real. When
multiple roots occur, one needs to solve a set of equations of matrix polynomials. As a result, we establish a procedure for describing those vectors used in the expression of saturated probability as linear combination of Kronecker products.
|
author2 |
Hsing, Luh |
author_facet |
Hsing, Luh Liu,Hsin-Yi 劉心怡 |
author |
Liu,Hsin-Yi 劉心怡 |
spellingShingle |
Liu,Hsin-Yi 劉心怡 計算 Ck/Cm/1 的機率分配之不變子空間 |
author_sort |
Liu,Hsin-Yi |
title |
計算 Ck/Cm/1 的機率分配之不變子空間 |
title_short |
計算 Ck/Cm/1 的機率分配之不變子空間 |
title_full |
計算 Ck/Cm/1 的機率分配之不變子空間 |
title_fullStr |
計算 Ck/Cm/1 的機率分配之不變子空間 |
title_full_unstemmed |
計算 Ck/Cm/1 的機率分配之不變子空間 |
title_sort |
計算 ck/cm/1 的機率分配之不變子空間 |
publishDate |
2004 |
url |
http://ndltd.ncl.edu.tw/handle/35059445181813127363 |
work_keys_str_mv |
AT liuhsinyi jìsuànckcm1dejīlǜfēnpèizhībùbiànzikōngjiān AT liúxīnyí jìsuànckcm1dejīlǜfēnpèizhībùbiànzikōngjiān AT liuhsinyi invariantsubspaceofsolvingckcm1 AT liúxīnyí invariantsubspaceofsolvingckcm1 |
_version_ |
1717770803194363904 |