The Research of Automatic Transforming The Chinese Natural Language Queries into SQL

碩士 === 大同大學 === 資訊經營研究所 === 91 === Abstract This paper aims at transforming Chinese natural language queries into SQL commands to provide an intelligent query system with a human-machine dialogue interface. The system is composed of three modules: Chinese keywords fuzzy extraction, semant...

Full description

Bibliographic Details
Main Authors: Lyu Chun-Yen, 呂俊彥
Other Authors: Yang Yen-Ju
Format: Others
Language:zh-TW
Published: 2003
Online Access:http://ndltd.ncl.edu.tw/handle/38272041146687629576
id ndltd-TW-091TTU00716003
record_format oai_dc
spelling ndltd-TW-091TTU007160032015-10-13T13:36:00Z http://ndltd.ncl.edu.tw/handle/38272041146687629576 The Research of Automatic Transforming The Chinese Natural Language Queries into SQL 中文自然語言查詢自動轉換為SQL之研究 Lyu Chun-Yen 呂俊彥 碩士 大同大學 資訊經營研究所 91 Abstract This paper aims at transforming Chinese natural language queries into SQL commands to provide an intelligent query system with a human-machine dialogue interface. The system is composed of three modules: Chinese keywords fuzzy extraction, semantic analysis, and SQL transformation. The first module is based on LCS (longest common subsequence algorithm) that supports fuzzy matching. The second module decides semantic frames from semantic lexicon, which is generated from a database beforehand. Finally, rules are used to convert the semantic frames into SQL. In the end, we have achieved initial experimental results to supply a flexible, convenient and efficient method for users to query actual data they want from database. Yang Yen-Ju 楊燕珠 2003 學位論文 ; thesis 76 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 大同大學 === 資訊經營研究所 === 91 === Abstract This paper aims at transforming Chinese natural language queries into SQL commands to provide an intelligent query system with a human-machine dialogue interface. The system is composed of three modules: Chinese keywords fuzzy extraction, semantic analysis, and SQL transformation. The first module is based on LCS (longest common subsequence algorithm) that supports fuzzy matching. The second module decides semantic frames from semantic lexicon, which is generated from a database beforehand. Finally, rules are used to convert the semantic frames into SQL. In the end, we have achieved initial experimental results to supply a flexible, convenient and efficient method for users to query actual data they want from database.
author2 Yang Yen-Ju
author_facet Yang Yen-Ju
Lyu Chun-Yen
呂俊彥
author Lyu Chun-Yen
呂俊彥
spellingShingle Lyu Chun-Yen
呂俊彥
The Research of Automatic Transforming The Chinese Natural Language Queries into SQL
author_sort Lyu Chun-Yen
title The Research of Automatic Transforming The Chinese Natural Language Queries into SQL
title_short The Research of Automatic Transforming The Chinese Natural Language Queries into SQL
title_full The Research of Automatic Transforming The Chinese Natural Language Queries into SQL
title_fullStr The Research of Automatic Transforming The Chinese Natural Language Queries into SQL
title_full_unstemmed The Research of Automatic Transforming The Chinese Natural Language Queries into SQL
title_sort research of automatic transforming the chinese natural language queries into sql
publishDate 2003
url http://ndltd.ncl.edu.tw/handle/38272041146687629576
work_keys_str_mv AT lyuchunyen theresearchofautomatictransformingthechinesenaturallanguagequeriesintosql
AT lǚjùnyàn theresearchofautomatictransformingthechinesenaturallanguagequeriesintosql
AT lyuchunyen zhōngwénzìrányǔyáncháxúnzìdòngzhuǎnhuànwèisqlzhīyánjiū
AT lǚjùnyàn zhōngwénzìrányǔyáncháxúnzìdòngzhuǎnhuànwèisqlzhīyánjiū
AT lyuchunyen researchofautomatictransformingthechinesenaturallanguagequeriesintosql
AT lǚjùnyàn researchofautomatictransformingthechinesenaturallanguagequeriesintosql
_version_ 1717739162773225472