A Parametrical Representation of the Riemann''s Minimal Surface with the Weierstrass Functions
碩士 === 國立臺灣大學 === 數學研究所 === 91 === Since every minimal surface in R^3 has an unique Weierstrass Representation, we can define the minimal surface by giving it''s Weierstrass data. In 1997, Gray gave a parametrical reprensentation of Costa''s minimal surface. In this pa...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2003
|
Online Access: | http://ndltd.ncl.edu.tw/handle/30562754536634177649 |
id |
ndltd-TW-091NTU00479016 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-091NTU004790162016-06-20T04:15:46Z http://ndltd.ncl.edu.tw/handle/30562754536634177649 A Parametrical Representation of the Riemann''s Minimal Surface with the Weierstrass Functions 以WEIERSTRASS函數座標化表示黎曼最小曲面 CHING-HAO CHANG 張清皓 碩士 國立臺灣大學 數學研究所 91 Since every minimal surface in R^3 has an unique Weierstrass Representation, we can define the minimal surface by giving it''s Weierstrass data. In 1997, Gray gave a parametrical reprensentation of Costa''s minimal surface. In this paper, we try to imitate Gray''s formula for Costa''s minimal surface and give a similar formulas to another famous embedded minimal surface : the Riemann''s minimal surface S0, and to an immersed minimal surface S1. All these three surfaces have Weierstrass data involving the Weierstrass p-function and the Weierstrass Zeta function. This similarity gives us a thought to extend Gray''s result on Costa''s case to S0 and S1. Ai-Nung Wang 王藹農 2003 學位論文 ; thesis 30 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立臺灣大學 === 數學研究所 === 91 === Since every minimal surface in R^3 has an unique Weierstrass
Representation, we can define the minimal surface by giving it''s Weierstrass data. In 1997, Gray gave a parametrical reprensentation of Costa''s minimal surface. In this paper, we try to imitate Gray''s formula for Costa''s minimal surface and give a similar formulas to another famous embedded minimal surface : the Riemann''s minimal surface S0, and to an immersed minimal surface S1. All these three surfaces have Weierstrass data involving the Weierstrass p-function and the Weierstrass Zeta function. This similarity gives us a thought to extend Gray''s result on Costa''s case to S0 and S1.
|
author2 |
Ai-Nung Wang |
author_facet |
Ai-Nung Wang CHING-HAO CHANG 張清皓 |
author |
CHING-HAO CHANG 張清皓 |
spellingShingle |
CHING-HAO CHANG 張清皓 A Parametrical Representation of the Riemann''s Minimal Surface with the Weierstrass Functions |
author_sort |
CHING-HAO CHANG |
title |
A Parametrical Representation of the Riemann''s Minimal Surface with the Weierstrass Functions |
title_short |
A Parametrical Representation of the Riemann''s Minimal Surface with the Weierstrass Functions |
title_full |
A Parametrical Representation of the Riemann''s Minimal Surface with the Weierstrass Functions |
title_fullStr |
A Parametrical Representation of the Riemann''s Minimal Surface with the Weierstrass Functions |
title_full_unstemmed |
A Parametrical Representation of the Riemann''s Minimal Surface with the Weierstrass Functions |
title_sort |
parametrical representation of the riemann''s minimal surface with the weierstrass functions |
publishDate |
2003 |
url |
http://ndltd.ncl.edu.tw/handle/30562754536634177649 |
work_keys_str_mv |
AT chinghaochang aparametricalrepresentationoftheriemannsminimalsurfacewiththeweierstrassfunctions AT zhāngqīnghào aparametricalrepresentationoftheriemannsminimalsurfacewiththeweierstrassfunctions AT chinghaochang yǐweierstrasshánshùzuòbiāohuàbiǎoshìlímànzuìxiǎoqūmiàn AT zhāngqīnghào yǐweierstrasshánshùzuòbiāohuàbiǎoshìlímànzuìxiǎoqūmiàn AT chinghaochang parametricalrepresentationoftheriemannsminimalsurfacewiththeweierstrassfunctions AT zhāngqīnghào parametricalrepresentationoftheriemannsminimalsurfacewiththeweierstrassfunctions |
_version_ |
1718310669074300928 |