On a Biclique Structure of Biconvex Bipartite Graphs
碩士 === 國立東華大學 === 資訊工程學系 === 91 === A bipartite graph G = (X, Y,E) is biconvex if both X and Y can be ordered so that for every vertex v in X ∪ Y , vertices in N(v) occur consecutively in the ordering. In this thesis, we define the interval representation on biconvex bipartite graphs. By the...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2003
|
Online Access: | http://ndltd.ncl.edu.tw/handle/93778774198190497263 |
id |
ndltd-TW-091NDHU5392014 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-091NDHU53920142016-06-22T04:20:04Z http://ndltd.ncl.edu.tw/handle/93778774198190497263 On a Biclique Structure of Biconvex Bipartite Graphs 雙凸二分圖上的完全二分子圖結構 Li-How Liau 廖利豪 碩士 國立東華大學 資訊工程學系 91 A bipartite graph G = (X, Y,E) is biconvex if both X and Y can be ordered so that for every vertex v in X ∪ Y , vertices in N(v) occur consecutively in the ordering. In this thesis, we define the interval representation on biconvex bipartite graphs. By the interval representation, we propose a trapezoid decomposition for biconvex bipartite graphs. We show that the trapezoid decomposition represent a biclique structure of a biconvex bipartite graph. Using this decomposition, the minimum fill-in and treewidth problems can be solved in a unified approach on biconvex bipartite graphs. Sheng-lung Peng 彭勝龍 2003 學位論文 ; thesis 37 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立東華大學 === 資訊工程學系 === 91 ===
A bipartite graph G = (X, Y,E) is biconvex if both X and Y can be ordered so that
for every vertex v in X ∪ Y , vertices in N(v) occur consecutively in the ordering. In
this thesis, we define the interval representation on biconvex bipartite graphs. By the
interval representation, we propose a trapezoid decomposition for biconvex bipartite
graphs. We show that the trapezoid decomposition represent a biclique structure
of a biconvex bipartite graph. Using this decomposition, the minimum fill-in and
treewidth problems can be solved in a unified approach on biconvex bipartite graphs.
|
author2 |
Sheng-lung Peng |
author_facet |
Sheng-lung Peng Li-How Liau 廖利豪 |
author |
Li-How Liau 廖利豪 |
spellingShingle |
Li-How Liau 廖利豪 On a Biclique Structure of Biconvex Bipartite Graphs |
author_sort |
Li-How Liau |
title |
On a Biclique Structure of Biconvex Bipartite Graphs |
title_short |
On a Biclique Structure of Biconvex Bipartite Graphs |
title_full |
On a Biclique Structure of Biconvex Bipartite Graphs |
title_fullStr |
On a Biclique Structure of Biconvex Bipartite Graphs |
title_full_unstemmed |
On a Biclique Structure of Biconvex Bipartite Graphs |
title_sort |
on a biclique structure of biconvex bipartite graphs |
publishDate |
2003 |
url |
http://ndltd.ncl.edu.tw/handle/93778774198190497263 |
work_keys_str_mv |
AT lihowliau onabicliquestructureofbiconvexbipartitegraphs AT liàolìháo onabicliquestructureofbiconvexbipartitegraphs AT lihowliau shuāngtūèrfēntúshàngdewánquánèrfēnzitújiégòu AT liàolìháo shuāngtūèrfēntúshàngdewánquánèrfēnzitújiégòu |
_version_ |
1718316903355645952 |