On a Biclique Structure of Biconvex Bipartite Graphs

碩士 === 國立東華大學 === 資訊工程學系 === 91 === A bipartite graph G = (X, Y,E) is biconvex if both X and Y can be ordered so that for every vertex v in X ∪ Y , vertices in N(v) occur consecutively in the ordering. In this thesis, we define the interval representation on biconvex bipartite graphs. By the...

Full description

Bibliographic Details
Main Authors: Li-How Liau, 廖利豪
Other Authors: Sheng-lung Peng
Format: Others
Language:en_US
Published: 2003
Online Access:http://ndltd.ncl.edu.tw/handle/93778774198190497263
id ndltd-TW-091NDHU5392014
record_format oai_dc
spelling ndltd-TW-091NDHU53920142016-06-22T04:20:04Z http://ndltd.ncl.edu.tw/handle/93778774198190497263 On a Biclique Structure of Biconvex Bipartite Graphs 雙凸二分圖上的完全二分子圖結構 Li-How Liau 廖利豪 碩士 國立東華大學 資訊工程學系 91 A bipartite graph G = (X, Y,E) is biconvex if both X and Y can be ordered so that for every vertex v in X ∪ Y , vertices in N(v) occur consecutively in the ordering. In this thesis, we define the interval representation on biconvex bipartite graphs. By the interval representation, we propose a trapezoid decomposition for biconvex bipartite graphs. We show that the trapezoid decomposition represent a biclique structure of a biconvex bipartite graph. Using this decomposition, the minimum fill-in and treewidth problems can be solved in a unified approach on biconvex bipartite graphs. Sheng-lung Peng 彭勝龍 2003 學位論文 ; thesis 37 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立東華大學 === 資訊工程學系 === 91 === A bipartite graph G = (X, Y,E) is biconvex if both X and Y can be ordered so that for every vertex v in X ∪ Y , vertices in N(v) occur consecutively in the ordering. In this thesis, we define the interval representation on biconvex bipartite graphs. By the interval representation, we propose a trapezoid decomposition for biconvex bipartite graphs. We show that the trapezoid decomposition represent a biclique structure of a biconvex bipartite graph. Using this decomposition, the minimum fill-in and treewidth problems can be solved in a unified approach on biconvex bipartite graphs.
author2 Sheng-lung Peng
author_facet Sheng-lung Peng
Li-How Liau
廖利豪
author Li-How Liau
廖利豪
spellingShingle Li-How Liau
廖利豪
On a Biclique Structure of Biconvex Bipartite Graphs
author_sort Li-How Liau
title On a Biclique Structure of Biconvex Bipartite Graphs
title_short On a Biclique Structure of Biconvex Bipartite Graphs
title_full On a Biclique Structure of Biconvex Bipartite Graphs
title_fullStr On a Biclique Structure of Biconvex Bipartite Graphs
title_full_unstemmed On a Biclique Structure of Biconvex Bipartite Graphs
title_sort on a biclique structure of biconvex bipartite graphs
publishDate 2003
url http://ndltd.ncl.edu.tw/handle/93778774198190497263
work_keys_str_mv AT lihowliau onabicliquestructureofbiconvexbipartitegraphs
AT liàolìháo onabicliquestructureofbiconvexbipartitegraphs
AT lihowliau shuāngtūèrfēntúshàngdewánquánèrfēnzitújiégòu
AT liàolìháo shuāngtūèrfēntúshàngdewánquánèrfēnzitújiégòu
_version_ 1718316903355645952