Hydrodynamics and Water Quality Simulation under Dramatic Variation of Water Level in Reservoir

碩士 === 國立中央大學 === 水文所 === 91 === Abstract This research simulates Shin-Men Reservoir’s hydrodynamics and water quality under suffering polluting and dramatic variation of water level by applying CE-QUAL-W2 model. This study is performed by applying year 2001’s in-situ measurement to be the accorda...

Full description

Bibliographic Details
Main Authors: Wen-Hsiung Hsieh, 謝文雄
Other Authors: none
Format: Others
Language:zh-TW
Published: 2003
Online Access:http://ndltd.ncl.edu.tw/handle/68930749321457800245
Description
Summary:碩士 === 國立中央大學 === 水文所 === 91 === Abstract This research simulates Shin-Men Reservoir’s hydrodynamics and water quality under suffering polluting and dramatic variation of water level by applying CE-QUAL-W2 model. This study is performed by applying year 2001’s in-situ measurement to be the accordance of model’s parameter’s test, and using year 2002’s in-situ measurement to be the calibration of model’s parameter and sensitivity analysis. Considering different inflow and pollutant loading’s effects to hydrodynamics and water quality to evaluate the suitability of the model in Shin-Men Reservoir. The result is acceptable in the prediction of the water level, water temperature, fluid dynamics simulated by CE-QUAL-W2. Among the items of water quality simulated, the dissolved oxygen (DO) is the most adequate, and the phosphorous (TP), ammonium nitrogen (NH3-N), chlorophyll-a (Chl-a), and nitrate nitrogen (NO3--N) are at acceptable. During the dramatic decrement period of water level between year 2002 Feb. to Jun., the model’s result shows: Chl-a runs the obviously uptrend, TP and NO3--N become low concentration for the algal absorb, DO decreases by algal’s breeding, NH3-N increases due to the reservoir pollutant loading by storm and runoff. The result of sensitivity analysis shows that the algal saturation growth rate (AG), saturation light intensity (ASAT), algal respiration rate (AR), light extinction coefficient (EXH2O), and algal settling rate (AS) are notable to model simulation, should be selected cautiously.