Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems
碩士 === 國立中興大學 === 應用數學系 === 91 === We discuss effcient numerical methods for solving semilinear elliptic eigenvalue problems. First, we use the ideal of symmetry reductions to discretize our problems in a symmetry cell by the finite element method. By doing this the size of the discretize...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2003
|
Online Access: | http://ndltd.ncl.edu.tw/handle/42942115681719457351 |
id |
ndltd-TW-091NCHU0507025 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-091NCHU05070252015-10-13T17:02:19Z http://ndltd.ncl.edu.tw/handle/42942115681719457351 Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems 用對稱簡化和多重網格有限元素法解半線性橢圓特徵值問題 Cheng Hsuan Li 李政軒 碩士 國立中興大學 應用數學系 91 We discuss effcient numerical methods for solving semilinear elliptic eigenvalue problems. First, we use the ideal of symmetry reductions to discretize our problems in a symmetry cell by the finite element method. By doing this the size of the discretized matrix becomes relatively small. Then we incorporate the V -cycle scheme multigrid method in the context of continuation method to trace solution branches of the discrete problems, where the Lanczos method is used as the relaxation scheme. Finally, we report some numerical results to show the algorithms we propose are effcient and robust, which also can be easily implemented. Cheng Sheng Chien 簡澄陞 2003 學位論文 ; thesis 33 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中興大學 === 應用數學系 === 91 === We discuss effcient numerical methods for solving semilinear elliptic eigenvalue problems. First, we use the ideal of symmetry reductions to discretize our problems in a symmetry cell by the finite element method. By doing this the size of the discretized matrix becomes relatively small. Then we incorporate the V -cycle scheme multigrid method in the context of continuation method to trace solution branches of the discrete problems, where the Lanczos method is used as the relaxation scheme. Finally, we report some numerical results to show the algorithms we propose are effcient and robust, which also can be easily implemented.
|
author2 |
Cheng Sheng Chien |
author_facet |
Cheng Sheng Chien Cheng Hsuan Li 李政軒 |
author |
Cheng Hsuan Li 李政軒 |
spellingShingle |
Cheng Hsuan Li 李政軒 Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems |
author_sort |
Cheng Hsuan Li |
title |
Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems |
title_short |
Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems |
title_full |
Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems |
title_fullStr |
Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems |
title_full_unstemmed |
Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems |
title_sort |
symmetry reductions and multigrid-finite element methods for semilinear elliptic eigenvalue problems |
publishDate |
2003 |
url |
http://ndltd.ncl.edu.tw/handle/42942115681719457351 |
work_keys_str_mv |
AT chenghsuanli symmetryreductionsandmultigridfiniteelementmethodsforsemilinearellipticeigenvalueproblems AT lǐzhèngxuān symmetryreductionsandmultigridfiniteelementmethodsforsemilinearellipticeigenvalueproblems AT chenghsuanli yòngduìchēngjiǎnhuàhéduōzhòngwǎnggéyǒuxiànyuánsùfǎjiěbànxiànxìngtuǒyuántèzhēngzhíwèntí AT lǐzhèngxuān yòngduìchēngjiǎnhuàhéduōzhòngwǎnggéyǒuxiànyuánsùfǎjiěbànxiànxìngtuǒyuántèzhēngzhíwèntí |
_version_ |
1717779639755079680 |