Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems

碩士 === 國立中興大學 === 應用數學系 === 91 === We discuss effcient numerical methods for solving semilinear elliptic eigenvalue problems. First, we use the ideal of symmetry reductions to discretize our problems in a symmetry cell by the finite element method. By doing this the size of the discretize...

Full description

Bibliographic Details
Main Authors: Cheng Hsuan Li, 李政軒
Other Authors: Cheng Sheng Chien
Format: Others
Language:en_US
Published: 2003
Online Access:http://ndltd.ncl.edu.tw/handle/42942115681719457351
id ndltd-TW-091NCHU0507025
record_format oai_dc
spelling ndltd-TW-091NCHU05070252015-10-13T17:02:19Z http://ndltd.ncl.edu.tw/handle/42942115681719457351 Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems 用對稱簡化和多重網格有限元素法解半線性橢圓特徵值問題 Cheng Hsuan Li 李政軒 碩士 國立中興大學 應用數學系 91 We discuss effcient numerical methods for solving semilinear elliptic eigenvalue problems. First, we use the ideal of symmetry reductions to discretize our problems in a symmetry cell by the finite element method. By doing this the size of the discretized matrix becomes relatively small. Then we incorporate the V -cycle scheme multigrid method in the context of continuation method to trace solution branches of the discrete problems, where the Lanczos method is used as the relaxation scheme. Finally, we report some numerical results to show the algorithms we propose are effcient and robust, which also can be easily implemented. Cheng Sheng Chien 簡澄陞 2003 學位論文 ; thesis 33 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中興大學 === 應用數學系 === 91 === We discuss effcient numerical methods for solving semilinear elliptic eigenvalue problems. First, we use the ideal of symmetry reductions to discretize our problems in a symmetry cell by the finite element method. By doing this the size of the discretized matrix becomes relatively small. Then we incorporate the V -cycle scheme multigrid method in the context of continuation method to trace solution branches of the discrete problems, where the Lanczos method is used as the relaxation scheme. Finally, we report some numerical results to show the algorithms we propose are effcient and robust, which also can be easily implemented.
author2 Cheng Sheng Chien
author_facet Cheng Sheng Chien
Cheng Hsuan Li
李政軒
author Cheng Hsuan Li
李政軒
spellingShingle Cheng Hsuan Li
李政軒
Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems
author_sort Cheng Hsuan Li
title Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems
title_short Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems
title_full Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems
title_fullStr Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems
title_full_unstemmed Symmetry Reductions and Multigrid-Finite Element Methods for Semilinear Elliptic Eigenvalue Problems
title_sort symmetry reductions and multigrid-finite element methods for semilinear elliptic eigenvalue problems
publishDate 2003
url http://ndltd.ncl.edu.tw/handle/42942115681719457351
work_keys_str_mv AT chenghsuanli symmetryreductionsandmultigridfiniteelementmethodsforsemilinearellipticeigenvalueproblems
AT lǐzhèngxuān symmetryreductionsandmultigridfiniteelementmethodsforsemilinearellipticeigenvalueproblems
AT chenghsuanli yòngduìchēngjiǎnhuàhéduōzhòngwǎnggéyǒuxiànyuánsùfǎjiěbànxiànxìngtuǒyuántèzhēngzhíwèntí
AT lǐzhèngxuān yòngduìchēngjiǎnhuàhéduōzhòngwǎnggéyǒuxiànyuánsùfǎjiěbànxiànxìngtuǒyuántèzhēngzhíwèntí
_version_ 1717779639755079680