An Approach on Function Estimation and Density Estimation

碩士 === 國立中正大學 === 數理統計研究所 === 91 === A recent approach using argument on expectation of random variables for estimation of unknown functional values based on some known values of the function at various points is investigated by way of empirical simulation. The approach can be applied to...

Full description

Bibliographic Details
Main Author: 莊宗霖
Other Authors: 高正雄
Format: Others
Language:en_US
Published: 2003
Online Access:http://ndltd.ncl.edu.tw/handle/92765889113139635622
id ndltd-TW-091CCU00477008
record_format oai_dc
spelling ndltd-TW-091CCU004770082016-06-24T04:15:55Z http://ndltd.ncl.edu.tw/handle/92765889113139635622 An Approach on Function Estimation and Density Estimation 函數估計與密度函數估計的逼近 莊宗霖 碩士 國立中正大學 數理統計研究所 91 A recent approach using argument on expectation of random variables for estimation of unknown functional values based on some known values of the function at various points is investigated by way of empirical simulation. The approach can be applied to do estimation on probability density functions based on random samples from the assumed distribution. Theoretical formulations are presented to express the estimators in each case. Such estimators are more extensive than the traditional kernel type estimators for estimating unknown functions and probability density functions. This empirical simulation produce insight regarding the role of selected bandwidth, size of random sample and type of the subject distributions. 高正雄 2003 學位論文 ; thesis 47 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中正大學 === 數理統計研究所 === 91 === A recent approach using argument on expectation of random variables for estimation of unknown functional values based on some known values of the function at various points is investigated by way of empirical simulation. The approach can be applied to do estimation on probability density functions based on random samples from the assumed distribution. Theoretical formulations are presented to express the estimators in each case. Such estimators are more extensive than the traditional kernel type estimators for estimating unknown functions and probability density functions. This empirical simulation produce insight regarding the role of selected bandwidth, size of random sample and type of the subject distributions.
author2 高正雄
author_facet 高正雄
莊宗霖
author 莊宗霖
spellingShingle 莊宗霖
An Approach on Function Estimation and Density Estimation
author_sort 莊宗霖
title An Approach on Function Estimation and Density Estimation
title_short An Approach on Function Estimation and Density Estimation
title_full An Approach on Function Estimation and Density Estimation
title_fullStr An Approach on Function Estimation and Density Estimation
title_full_unstemmed An Approach on Function Estimation and Density Estimation
title_sort approach on function estimation and density estimation
publishDate 2003
url http://ndltd.ncl.edu.tw/handle/92765889113139635622
work_keys_str_mv AT zhuāngzōnglín anapproachonfunctionestimationanddensityestimation
AT zhuāngzōnglín hánshùgūjìyǔmìdùhánshùgūjìdebījìn
AT zhuāngzōnglín approachonfunctionestimationanddensityestimation
_version_ 1718322845697703936