Statistical Inference about the Shape Parameter of the New Two Parameter Distribution with the Bathtub Shape or Increasing Failure Rate Function by Doubly TypeⅡCensored Samples and Upper Record Values

碩士 === 淡江大學 === 統計學系 === 90 === In this paper, we discuss the lifetime of a product from the new two parameter distribution with the bathtub shape or increasing failure rate function by doubly typeⅡcensored samples and upper record values. First, we provide ten pivotal quantities to test...

Full description

Bibliographic Details
Main Authors: Chun-Hsien Wu, 吳俊賢
Other Authors: Jong-Wuu Wu
Format: Others
Language:zh-TW
Published: 2002
Online Access:http://ndltd.ncl.edu.tw/handle/66989591741539578598
id ndltd-TW-090TKU00337008
record_format oai_dc
spelling ndltd-TW-090TKU003370082016-06-24T04:14:56Z http://ndltd.ncl.edu.tw/handle/66989591741539578598 Statistical Inference about the Shape Parameter of the New Two Parameter Distribution with the Bathtub Shape or Increasing Failure Rate Function by Doubly TypeⅡCensored Samples and Upper Record Values 以雙型Ⅱ設限樣本與上記錄值對具有浴缸型或遞增的失敗率函數之新雙參數分配的形狀參數做統計推論 Chun-Hsien Wu 吳俊賢 碩士 淡江大學 統計學系 90 In this paper, we discuss the lifetime of a product from the new two parameter distribution with the bathtub shape or increasing failure rate function by doubly typeⅡcensored samples and upper record values. First, we provide ten pivotal quantities to test the shape parameter of the new two parameter distribution and establish confidence interval of the shape parameter in typeⅡcensored samples. Second, we extend typeⅡcensored samples to upper record values. Similarly, we will provide several pivotal quantities and to test hypotheses and establish the confidence interval of the shape parameter. This paper proposes a simple exact statistical test for the shape parameter of the new two parameter distribution, as well as an exact confidence interval for the same parameter by typeⅡcensored samples and upper record values. Necessary critical values of the test are given. Finally, we give some examples and the Monte Carlo simulation to assess the behavior(including higher power and more shorter length of confidence interval)of these pivotal quantities for testing null hypotheses under given significance level and establishing confidence interval of the shape parameter under the confidence coefficient. Jong-Wuu Wu 吳忠武 2002 學位論文 ; thesis 167 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 淡江大學 === 統計學系 === 90 === In this paper, we discuss the lifetime of a product from the new two parameter distribution with the bathtub shape or increasing failure rate function by doubly typeⅡcensored samples and upper record values. First, we provide ten pivotal quantities to test the shape parameter of the new two parameter distribution and establish confidence interval of the shape parameter in typeⅡcensored samples. Second, we extend typeⅡcensored samples to upper record values. Similarly, we will provide several pivotal quantities and to test hypotheses and establish the confidence interval of the shape parameter. This paper proposes a simple exact statistical test for the shape parameter of the new two parameter distribution, as well as an exact confidence interval for the same parameter by typeⅡcensored samples and upper record values. Necessary critical values of the test are given. Finally, we give some examples and the Monte Carlo simulation to assess the behavior(including higher power and more shorter length of confidence interval)of these pivotal quantities for testing null hypotheses under given significance level and establishing confidence interval of the shape parameter under the confidence coefficient.
author2 Jong-Wuu Wu
author_facet Jong-Wuu Wu
Chun-Hsien Wu
吳俊賢
author Chun-Hsien Wu
吳俊賢
spellingShingle Chun-Hsien Wu
吳俊賢
Statistical Inference about the Shape Parameter of the New Two Parameter Distribution with the Bathtub Shape or Increasing Failure Rate Function by Doubly TypeⅡCensored Samples and Upper Record Values
author_sort Chun-Hsien Wu
title Statistical Inference about the Shape Parameter of the New Two Parameter Distribution with the Bathtub Shape or Increasing Failure Rate Function by Doubly TypeⅡCensored Samples and Upper Record Values
title_short Statistical Inference about the Shape Parameter of the New Two Parameter Distribution with the Bathtub Shape or Increasing Failure Rate Function by Doubly TypeⅡCensored Samples and Upper Record Values
title_full Statistical Inference about the Shape Parameter of the New Two Parameter Distribution with the Bathtub Shape or Increasing Failure Rate Function by Doubly TypeⅡCensored Samples and Upper Record Values
title_fullStr Statistical Inference about the Shape Parameter of the New Two Parameter Distribution with the Bathtub Shape or Increasing Failure Rate Function by Doubly TypeⅡCensored Samples and Upper Record Values
title_full_unstemmed Statistical Inference about the Shape Parameter of the New Two Parameter Distribution with the Bathtub Shape or Increasing Failure Rate Function by Doubly TypeⅡCensored Samples and Upper Record Values
title_sort statistical inference about the shape parameter of the new two parameter distribution with the bathtub shape or increasing failure rate function by doubly typeⅱcensored samples and upper record values
publishDate 2002
url http://ndltd.ncl.edu.tw/handle/66989591741539578598
work_keys_str_mv AT chunhsienwu statisticalinferenceabouttheshapeparameterofthenewtwoparameterdistributionwiththebathtubshapeorincreasingfailureratefunctionbydoublytypeiicensoredsamplesandupperrecordvalues
AT wújùnxián statisticalinferenceabouttheshapeparameterofthenewtwoparameterdistributionwiththebathtubshapeorincreasingfailureratefunctionbydoublytypeiicensoredsamplesandupperrecordvalues
AT chunhsienwu yǐshuāngxíngiishèxiànyàngběnyǔshàngjìlùzhíduìjùyǒuyùgāngxínghuòdìzēngdeshībàilǜhánshùzhīxīnshuāngcānshùfēnpèidexíngzhuàngcānshùzuòtǒngjìtuīlùn
AT wújùnxián yǐshuāngxíngiishèxiànyàngběnyǔshàngjìlùzhíduìjùyǒuyùgāngxínghuòdìzēngdeshībàilǜhánshùzhīxīnshuāngcānshùfēnpèidexíngzhuàngcānshùzuòtǒngjìtuīlùn
_version_ 1718321016804999168