Interval estimation of the parameters of the weibull and extreme value distributions by upper record value

碩士 === 淡江大學 === 統計學系 === 90 === We assume that can be a sequence of independent and identically Weibull distribution random variables with probability density function as given where (> 0)and (> 0)are two parameters (also see Weibull (1939)or Johnson, Kotz and Baladrishna...

Full description

Bibliographic Details
Main Authors: Hsin-Ying Huang, 黃欣盈
Other Authors: 吳忠武
Format: Others
Language:zh-TW
Published: 2002
Online Access:http://ndltd.ncl.edu.tw/handle/24725685259212019149
id ndltd-TW-090TKU00337001
record_format oai_dc
spelling ndltd-TW-090TKU003370012016-06-24T04:14:56Z http://ndltd.ncl.edu.tw/handle/24725685259212019149 Interval estimation of the parameters of the weibull and extreme value distributions by upper record value 藉著上記錄值探討韋伯分配與極值分配的區間估計 Hsin-Ying Huang 黃欣盈 碩士 淡江大學 統計學系 90 We assume that can be a sequence of independent and identically Weibull distribution random variables with probability density function as given where (> 0)and (> 0)are two parameters (also see Weibull (1939)or Johnson, Kotz and Baladrishnan (1994))。Let be the upper record values of Weibull distribution, where and U(1)=1。We can find 100(1- )﹪confidence interval of the parameter and the joint confidence regions of the parameters( )。In addiction ,we define a rule (ex: the shortest of the confidence interval length, minimization the sample mean square error, or minimization the confidence region area) to find the best interval estimation of the parameter and the exact joint confidence regions of the parameters( )。We expect to extend the method to other distributions as Extreme-value distribution with probability density function as given where and are location parameter and scale parameter, respectively. Finally, we also give some examples and simulation to evaluate the method. 吳忠武 2002 學位論文 ; thesis 263 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 淡江大學 === 統計學系 === 90 === We assume that can be a sequence of independent and identically Weibull distribution random variables with probability density function as given where (> 0)and (> 0)are two parameters (also see Weibull (1939)or Johnson, Kotz and Baladrishnan (1994))。Let be the upper record values of Weibull distribution, where and U(1)=1。We can find 100(1- )﹪confidence interval of the parameter and the joint confidence regions of the parameters( )。In addiction ,we define a rule (ex: the shortest of the confidence interval length, minimization the sample mean square error, or minimization the confidence region area) to find the best interval estimation of the parameter and the exact joint confidence regions of the parameters( )。We expect to extend the method to other distributions as Extreme-value distribution with probability density function as given where and are location parameter and scale parameter, respectively. Finally, we also give some examples and simulation to evaluate the method.
author2 吳忠武
author_facet 吳忠武
Hsin-Ying Huang
黃欣盈
author Hsin-Ying Huang
黃欣盈
spellingShingle Hsin-Ying Huang
黃欣盈
Interval estimation of the parameters of the weibull and extreme value distributions by upper record value
author_sort Hsin-Ying Huang
title Interval estimation of the parameters of the weibull and extreme value distributions by upper record value
title_short Interval estimation of the parameters of the weibull and extreme value distributions by upper record value
title_full Interval estimation of the parameters of the weibull and extreme value distributions by upper record value
title_fullStr Interval estimation of the parameters of the weibull and extreme value distributions by upper record value
title_full_unstemmed Interval estimation of the parameters of the weibull and extreme value distributions by upper record value
title_sort interval estimation of the parameters of the weibull and extreme value distributions by upper record value
publishDate 2002
url http://ndltd.ncl.edu.tw/handle/24725685259212019149
work_keys_str_mv AT hsinyinghuang intervalestimationoftheparametersoftheweibullandextremevaluedistributionsbyupperrecordvalue
AT huángxīnyíng intervalestimationoftheparametersoftheweibullandextremevaluedistributionsbyupperrecordvalue
AT hsinyinghuang jízheshàngjìlùzhítàntǎowéibófēnpèiyǔjízhífēnpèideqūjiāngūjì
AT huángxīnyíng jízheshàngjìlùzhítàntǎowéibófēnpèiyǔjízhífēnpèideqūjiāngūjì
_version_ 1718321013170634752