Interval estimation of the parameters of the weibull and extreme value distributions by upper record value
碩士 === 淡江大學 === 統計學系 === 90 === We assume that can be a sequence of independent and identically Weibull distribution random variables with probability density function as given where (> 0)and (> 0)are two parameters (also see Weibull (1939)or Johnson, Kotz and Baladrishna...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2002
|
Online Access: | http://ndltd.ncl.edu.tw/handle/24725685259212019149 |
id |
ndltd-TW-090TKU00337001 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-090TKU003370012016-06-24T04:14:56Z http://ndltd.ncl.edu.tw/handle/24725685259212019149 Interval estimation of the parameters of the weibull and extreme value distributions by upper record value 藉著上記錄值探討韋伯分配與極值分配的區間估計 Hsin-Ying Huang 黃欣盈 碩士 淡江大學 統計學系 90 We assume that can be a sequence of independent and identically Weibull distribution random variables with probability density function as given where (> 0)and (> 0)are two parameters (also see Weibull (1939)or Johnson, Kotz and Baladrishnan (1994))。Let be the upper record values of Weibull distribution, where and U(1)=1。We can find 100(1- )﹪confidence interval of the parameter and the joint confidence regions of the parameters( )。In addiction ,we define a rule (ex: the shortest of the confidence interval length, minimization the sample mean square error, or minimization the confidence region area) to find the best interval estimation of the parameter and the exact joint confidence regions of the parameters( )。We expect to extend the method to other distributions as Extreme-value distribution with probability density function as given where and are location parameter and scale parameter, respectively. Finally, we also give some examples and simulation to evaluate the method. 吳忠武 2002 學位論文 ; thesis 263 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 淡江大學 === 統計學系 === 90 === We assume that can be a sequence of independent and identically Weibull distribution random variables with probability density function as given
where (> 0)and (> 0)are two parameters (also see Weibull (1939)or Johnson, Kotz and Baladrishnan (1994))。Let be the upper record values of Weibull distribution, where and U(1)=1。We can find 100(1- )﹪confidence interval of the parameter and the joint confidence regions of the parameters( )。In addiction ,we define a rule (ex: the shortest of the confidence interval length, minimization the sample mean square error, or minimization the confidence region area) to find the best interval estimation of the parameter and the exact joint confidence regions of the parameters( )。We expect to extend the method to other distributions as Extreme-value distribution with probability density function as given
where and are location parameter and scale parameter, respectively. Finally, we also give some examples and simulation to evaluate the method.
|
author2 |
吳忠武 |
author_facet |
吳忠武 Hsin-Ying Huang 黃欣盈 |
author |
Hsin-Ying Huang 黃欣盈 |
spellingShingle |
Hsin-Ying Huang 黃欣盈 Interval estimation of the parameters of the weibull and extreme value distributions by upper record value |
author_sort |
Hsin-Ying Huang |
title |
Interval estimation of the parameters of the weibull and extreme value distributions by upper record value |
title_short |
Interval estimation of the parameters of the weibull and extreme value distributions by upper record value |
title_full |
Interval estimation of the parameters of the weibull and extreme value distributions by upper record value |
title_fullStr |
Interval estimation of the parameters of the weibull and extreme value distributions by upper record value |
title_full_unstemmed |
Interval estimation of the parameters of the weibull and extreme value distributions by upper record value |
title_sort |
interval estimation of the parameters of the weibull and extreme value distributions by upper record value |
publishDate |
2002 |
url |
http://ndltd.ncl.edu.tw/handle/24725685259212019149 |
work_keys_str_mv |
AT hsinyinghuang intervalestimationoftheparametersoftheweibullandextremevaluedistributionsbyupperrecordvalue AT huángxīnyíng intervalestimationoftheparametersoftheweibullandextremevaluedistributionsbyupperrecordvalue AT hsinyinghuang jízheshàngjìlùzhítàntǎowéibófēnpèiyǔjízhífēnpèideqūjiāngūjì AT huángxīnyíng jízheshàngjìlùzhítàntǎowéibófēnpèiyǔjízhífēnpèideqūjiāngūjì |
_version_ |
1718321013170634752 |