The Harmonious Chromatic Number of Bipartite Graphs
碩士 === 大同大學 === 應用數學研究所 === 89 === A harmonious coloring of a simple graph G is a coloring of the vertices such that adjacent vertices receive distinct colors and each pair of colors appears together on at most one edge. The harmonious chromatic number h(G) is the least number...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2001
|
Online Access: | http://ndltd.ncl.edu.tw/handle/83233078084255049728 |
id |
ndltd-TW-089TTU00507002 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-089TTU005070022015-10-13T12:14:42Z http://ndltd.ncl.edu.tw/handle/83233078084255049728 The Harmonious Chromatic Number of Bipartite Graphs 二分圖之調和著色數 Chuang-Ching Chiu 邱創清 碩士 大同大學 應用數學研究所 89 A harmonious coloring of a simple graph G is a coloring of the vertices such that adjacent vertices receive distinct colors and each pair of colors appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colors in such a coloring. In this thesis, We amend Auto Kundrik's result about the Nordhaus-Gaddum theorem, and discuss the harmonious chromatic number of complete r-ary tree, crown graphs, and some bipartite graphs. Nam-Po Chiang 江南波 2001 學位論文 ; thesis 0 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 大同大學 === 應用數學研究所 === 89 === A harmonious coloring of a simple graph G is a coloring of the vertices such that adjacent vertices receive distinct colors
and each pair of colors appears together on at most one edge. The harmonious chromatic number h(G) is the least number of
colors in such a coloring. In this thesis, We amend Auto Kundrik's result about the Nordhaus-Gaddum theorem,
and discuss the harmonious chromatic number of complete r-ary tree, crown graphs, and some bipartite graphs.
|
author2 |
Nam-Po Chiang |
author_facet |
Nam-Po Chiang Chuang-Ching Chiu 邱創清 |
author |
Chuang-Ching Chiu 邱創清 |
spellingShingle |
Chuang-Ching Chiu 邱創清 The Harmonious Chromatic Number of Bipartite Graphs |
author_sort |
Chuang-Ching Chiu |
title |
The Harmonious Chromatic Number of Bipartite Graphs |
title_short |
The Harmonious Chromatic Number of Bipartite Graphs |
title_full |
The Harmonious Chromatic Number of Bipartite Graphs |
title_fullStr |
The Harmonious Chromatic Number of Bipartite Graphs |
title_full_unstemmed |
The Harmonious Chromatic Number of Bipartite Graphs |
title_sort |
harmonious chromatic number of bipartite graphs |
publishDate |
2001 |
url |
http://ndltd.ncl.edu.tw/handle/83233078084255049728 |
work_keys_str_mv |
AT chuangchingchiu theharmoniouschromaticnumberofbipartitegraphs AT qiūchuàngqīng theharmoniouschromaticnumberofbipartitegraphs AT chuangchingchiu èrfēntúzhīdiàohézhesèshù AT qiūchuàngqīng èrfēntúzhīdiàohézhesèshù AT chuangchingchiu harmoniouschromaticnumberofbipartitegraphs AT qiūchuàngqīng harmoniouschromaticnumberofbipartitegraphs |
_version_ |
1716855303120617472 |