Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc
碩士 === 東海大學 === 數學系 === 89 === Consider symmetrized bidisc $\Gamma_{2}$:% $$\Gamma_{2}\triangleq \{(s,p):\lambda^{2}-s\lambda+p=0,~\lambda \in \mathbb{C},~|\lambda|\leq1\}$$% and spectral Nevanlinna-Pick Interpolation non-flat problem on it as:\\ % Given $...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2001
|
Online Access: | http://ndltd.ncl.edu.tw/handle/94495204389019542431 |
id |
ndltd-TW-089THU00479006 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-089THU004790062015-10-13T12:10:00Z http://ndltd.ncl.edu.tw/handle/94495204389019542431 Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc 對稱雙盤上的spectralNevanlinna-Pick插值問題 Tien-De Lin 林天得 碩士 東海大學 數學系 89 Consider symmetrized bidisc $\Gamma_{2}$:% $$\Gamma_{2}\triangleq \{(s,p):\lambda^{2}-s\lambda+p=0,~\lambda \in \mathbb{C},~|\lambda|\leq1\}$$% and spectral Nevanlinna-Pick Interpolation non-flat problem on it as:\\ % Given $\alpha_{1},~\alpha_{2} \in \mathbb{D},~(s_{1},0),~(s_{2},0) % \in {\rm Int}~\Gamma_{2} $,% $\varphi : \mathbb{D} \longrightarrow {\rm Int}~\Gamma_{2}$,is analytic,% ~such that~$\varphi(\alpha_{1}) = (s_{1},0)$,$\varphi(\alpha_{2}) = (s_{2},~0)$,% ~by the equality of Carath$\acute{e}$odory and Kobayashi distances,% ~and Schur theorem, ~we can find $\varphi$ that we want. Fang-Bo Yeh 葉芳柏 2001 學位論文 ; thesis 47 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 東海大學 === 數學系 === 89 === Consider symmetrized bidisc $\Gamma_{2}$:%
$$\Gamma_{2}\triangleq \{(s,p):\lambda^{2}-s\lambda+p=0,~\lambda \in \mathbb{C},~|\lambda|\leq1\}$$%
and spectral Nevanlinna-Pick Interpolation non-flat problem on it as:\\ %
Given $\alpha_{1},~\alpha_{2} \in \mathbb{D},~(s_{1},0),~(s_{2},0) %
\in {\rm Int}~\Gamma_{2} $,%
$\varphi : \mathbb{D} \longrightarrow {\rm Int}~\Gamma_{2}$,is analytic,%
~such that~$\varphi(\alpha_{1}) = (s_{1},0)$,$\varphi(\alpha_{2}) = (s_{2},~0)$,%
~by the equality of Carath$\acute{e}$odory and Kobayashi distances,%
~and Schur theorem,
~we can find $\varphi$ that we want.
|
author2 |
Fang-Bo Yeh |
author_facet |
Fang-Bo Yeh Tien-De Lin 林天得 |
author |
Tien-De Lin 林天得 |
spellingShingle |
Tien-De Lin 林天得 Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc |
author_sort |
Tien-De Lin |
title |
Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc |
title_short |
Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc |
title_full |
Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc |
title_fullStr |
Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc |
title_full_unstemmed |
Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc |
title_sort |
spectral nevanlinna-pick interpolation on symmetrized bidisc |
publishDate |
2001 |
url |
http://ndltd.ncl.edu.tw/handle/94495204389019542431 |
work_keys_str_mv |
AT tiendelin spectralnevanlinnapickinterpolationonsymmetrizedbidisc AT líntiāndé spectralnevanlinnapickinterpolationonsymmetrizedbidisc AT tiendelin duìchēngshuāngpánshàngdespectralnevanlinnapickchāzhíwèntí AT líntiāndé duìchēngshuāngpánshàngdespectralnevanlinnapickchāzhíwèntí |
_version_ |
1716854483339706368 |