Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc

碩士 === 東海大學 === 數學系 === 89 === Consider symmetrized bidisc $\Gamma_{2}$:% $$\Gamma_{2}\triangleq \{(s,p):\lambda^{2}-s\lambda+p=0,~\lambda \in \mathbb{C},~|\lambda|\leq1\}$$% and spectral Nevanlinna-Pick Interpolation non-flat problem on it as:\\ % Given $...

Full description

Bibliographic Details
Main Authors: Tien-De Lin, 林天得
Other Authors: Fang-Bo Yeh
Format: Others
Language:zh-TW
Published: 2001
Online Access:http://ndltd.ncl.edu.tw/handle/94495204389019542431
id ndltd-TW-089THU00479006
record_format oai_dc
spelling ndltd-TW-089THU004790062015-10-13T12:10:00Z http://ndltd.ncl.edu.tw/handle/94495204389019542431 Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc 對稱雙盤上的spectralNevanlinna-Pick插值問題 Tien-De Lin 林天得 碩士 東海大學 數學系 89 Consider symmetrized bidisc $\Gamma_{2}$:% $$\Gamma_{2}\triangleq \{(s,p):\lambda^{2}-s\lambda+p=0,~\lambda \in \mathbb{C},~|\lambda|\leq1\}$$% and spectral Nevanlinna-Pick Interpolation non-flat problem on it as:\\ % Given $\alpha_{1},~\alpha_{2} \in \mathbb{D},~(s_{1},0),~(s_{2},0) % \in {\rm Int}~\Gamma_{2} $,% $\varphi : \mathbb{D} \longrightarrow {\rm Int}~\Gamma_{2}$,is analytic,% ~such that~$\varphi(\alpha_{1}) = (s_{1},0)$,$\varphi(\alpha_{2}) = (s_{2},~0)$,% ~by the equality of Carath$\acute{e}$odory and Kobayashi distances,% ~and Schur theorem, ~we can find $\varphi$ that we want. Fang-Bo Yeh 葉芳柏 2001 學位論文 ; thesis 47 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 東海大學 === 數學系 === 89 === Consider symmetrized bidisc $\Gamma_{2}$:% $$\Gamma_{2}\triangleq \{(s,p):\lambda^{2}-s\lambda+p=0,~\lambda \in \mathbb{C},~|\lambda|\leq1\}$$% and spectral Nevanlinna-Pick Interpolation non-flat problem on it as:\\ % Given $\alpha_{1},~\alpha_{2} \in \mathbb{D},~(s_{1},0),~(s_{2},0) % \in {\rm Int}~\Gamma_{2} $,% $\varphi : \mathbb{D} \longrightarrow {\rm Int}~\Gamma_{2}$,is analytic,% ~such that~$\varphi(\alpha_{1}) = (s_{1},0)$,$\varphi(\alpha_{2}) = (s_{2},~0)$,% ~by the equality of Carath$\acute{e}$odory and Kobayashi distances,% ~and Schur theorem, ~we can find $\varphi$ that we want.
author2 Fang-Bo Yeh
author_facet Fang-Bo Yeh
Tien-De Lin
林天得
author Tien-De Lin
林天得
spellingShingle Tien-De Lin
林天得
Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc
author_sort Tien-De Lin
title Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc
title_short Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc
title_full Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc
title_fullStr Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc
title_full_unstemmed Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc
title_sort spectral nevanlinna-pick interpolation on symmetrized bidisc
publishDate 2001
url http://ndltd.ncl.edu.tw/handle/94495204389019542431
work_keys_str_mv AT tiendelin spectralnevanlinnapickinterpolationonsymmetrizedbidisc
AT líntiāndé spectralnevanlinnapickinterpolationonsymmetrizedbidisc
AT tiendelin duìchēngshuāngpánshàngdespectralnevanlinnapickchāzhíwèntí
AT líntiāndé duìchēngshuāngpánshàngdespectralnevanlinnapickchāzhíwèntí
_version_ 1716854483339706368