Summary: | 碩士 === 國立臺灣大學 === 化學工程學研究所 === 89 === The electrical interaction between two parallel, long, rod-like particles, each is covered by an ion-penetrable charged membrane layer, immersed in a water/oil interface is analyzed theoretically based on a finite element scheme. The effects of the relative sizes of particles, the thickness of membrane layer, the valence of electrolyte, the concentration of electrolyte in oil phase, the fraction of a particle in water (oil) phase, and the shape of particle on the electrical interaction are discussed. We also consider the case where the membrane layer contains acidic dissociable functional groups, and the effects of pH, the equilibrium dissociation constant, the valence of electrolyte, the concentration of electrolyte in oil phase, and the shape of particle on the electrical interaction are evaluated. We conclude the followings: (1) The rate of decrease in the electrical potential as the separation distance between two particles varies in oil phase is slower than that in water phase. (2) For constant total amount of fixed charge in membrane layer, the thinner the membrane the greater the electrical interaction force. (3) The higher the pH or the larger the equilibrium dissociation constant, the greater the interaction force. (4) The closer the shape of a particle to a cylinder the smaller the interaction force. (5) The interaction force when the major axis of a particle is parallel to oil-water interface is smaller to that when it is perpendicular to oil-water interface.
|