The Reconstruction Formula of InverseNodal Problems and Related Topics
碩士 === 國立中山大學 === 應用數學系研究所 === 89 === Consider the Sturm-Liouville system : 8 > > > > > < > > > > > : − y00 + q(x)y = y y(0) cos + y0(0) sin = 0 y(1) cos + y0(1) sin = 0 , where q 2 L 1 (0, 1) and , 2 [0, ˇ). Let 0 < x(n)1 < x(n)2 < ... < x(n)n...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2001
|
Online Access: | http://ndltd.ncl.edu.tw/handle/21716667440659847732 |
id |
ndltd-TW-089NSYS5507005 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-089NSYS55070052016-01-29T04:33:39Z http://ndltd.ncl.edu.tw/handle/21716667440659847732 The Reconstruction Formula of InverseNodal Problems and Related Topics 節點反演問題之重構公式及相關課題 Ya-ting Chen 陳雅婷 碩士 國立中山大學 應用數學系研究所 89 Consider the Sturm-Liouville system : 8 > > > > > < > > > > > : − y00 + q(x)y = y y(0) cos + y0(0) sin = 0 y(1) cos + y0(1) sin = 0 , where q 2 L 1 (0, 1) and , 2 [0, ˇ). Let 0 < x(n)1 < x(n)2 < ... < x(n)n − 1 < 1 be the nodal points of n-th eigenfunction in (0,1). The inverse nodal problem involves the determination of the parameters (q, , ) in the system by the knowledge of the nodal points . This problem was first proposed and studied by McLaughlin. Hald-McLaughlin gave a reconstruc- tion formula of q(x) when q 2 C 1 . In 1999, Law-Shen-Yang improved a result of X. F. Yang to show that the same formula converges to q pointwisely for a.e. x 2 (0, 1), when q 2 L 1 . We found that there are some mistakes in the proof of the asymptotic formulas for sn and l(n)j in Law-Shen-Yang’s paper. So, in this thesis, we correct the mistakes and prove the reconstruction formula for q 2 L 1 again. Fortunately, the mistakes do not affect this result.Furthermore, we show that this reconstruction formula converges to q in L 1 (0, 1) . Our method is similar to that in the proof of pointwise convergence. Chun-Kong Law 羅春光 2001 學位論文 ; thesis 23 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中山大學 === 應用數學系研究所 === 89 === Consider the Sturm-Liouville system :
8 > > > > > < > > > > > :
− y00 + q(x)y = y
y(0) cos + y0(0) sin = 0
y(1) cos + y0(1) sin = 0
,
where q 2 L 1 (0, 1) and , 2 [0, ˇ).
Let 0 < x(n)1 < x(n)2 < ... < x(n)n − 1 < 1 be the nodal points of n-th eigenfunction
in (0,1). The inverse nodal problem involves the determination of the parameters
(q, , ) in the system by the knowledge of the nodal points . This problem was
first proposed and studied by McLaughlin. Hald-McLaughlin gave a reconstruc-
tion formula of q(x) when q 2 C 1 . In 1999, Law-Shen-Yang improved a result
of X. F. Yang to show that the same formula converges to q pointwisely for a.e.
x 2 (0, 1), when q 2 L 1 .
We found that there are some mistakes in the proof of the asymptotic formulas
for sn and l(n)j in Law-Shen-Yang’s paper. So, in this thesis, we correct the
mistakes and prove the reconstruction formula for q 2 L 1 again. Fortunately, the
mistakes do not affect this result.Furthermore, we show that this reconstruction formula converges to q in
L 1 (0, 1) . Our method is similar to that in the proof of pointwise convergence.
|
author2 |
Chun-Kong Law |
author_facet |
Chun-Kong Law Ya-ting Chen 陳雅婷 |
author |
Ya-ting Chen 陳雅婷 |
spellingShingle |
Ya-ting Chen 陳雅婷 The Reconstruction Formula of InverseNodal Problems and Related Topics |
author_sort |
Ya-ting Chen |
title |
The Reconstruction Formula of InverseNodal Problems and Related Topics |
title_short |
The Reconstruction Formula of InverseNodal Problems and Related Topics |
title_full |
The Reconstruction Formula of InverseNodal Problems and Related Topics |
title_fullStr |
The Reconstruction Formula of InverseNodal Problems and Related Topics |
title_full_unstemmed |
The Reconstruction Formula of InverseNodal Problems and Related Topics |
title_sort |
reconstruction formula of inversenodal problems and related topics |
publishDate |
2001 |
url |
http://ndltd.ncl.edu.tw/handle/21716667440659847732 |
work_keys_str_mv |
AT yatingchen thereconstructionformulaofinversenodalproblemsandrelatedtopics AT chényǎtíng thereconstructionformulaofinversenodalproblemsandrelatedtopics AT yatingchen jiédiǎnfǎnyǎnwèntízhīzhònggòugōngshìjíxiāngguānkètí AT chényǎtíng jiédiǎnfǎnyǎnwèntízhīzhònggòugōngshìjíxiāngguānkètí AT yatingchen reconstructionformulaofinversenodalproblemsandrelatedtopics AT chényǎtíng reconstructionformulaofinversenodalproblemsandrelatedtopics |
_version_ |
1718172958256529408 |