Factorization of Fibonacci Words Involving Palindrome Inverses and Borders
碩士 === 中原大學 === 數學研究所 === 89 === Abstract Let $A= { a,b }$. In [2], the $n$-th order Fibonacci word $w_n^{r_1r_2 ldots r_{n-2}}$ over $A$, where $r_1, cdots ,r_{n-2} in {0,1 }$, was defined recursively as follows: $w_1=a$, $w_2=b$, $w_3^0=ba$, $w_3^1=ab$, $w_4^{00}=bab$, $w_4^{11}=bab...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2001
|
Online Access: | http://ndltd.ncl.edu.tw/handle/26557516375125133239 |