Jackknife methods for truncated data

碩士 === 東海大學 === 統計學系 === 88 === Let $X$ and $Y$ be two independent positive random variables with survival functions $\bar F$ and $\bar G$, respectively. Under random truncation, $X$ and $Y$ are both observable only when $X\ge Y$. The nonparametric MLE of $\bar F (x)$, $\bar F_n (x) =1-F_...

Full description

Bibliographic Details
Main Authors: Meng-Fu Shih, 施孟甫
Other Authors: Pao-Sheng Shen
Format: Others
Language:en_US
Published: 2000
Online Access:http://ndltd.ncl.edu.tw/handle/03127270794409125599
id ndltd-TW-088THU00337001
record_format oai_dc
spelling ndltd-TW-088THU003370012016-01-29T04:19:17Z http://ndltd.ncl.edu.tw/handle/03127270794409125599 Jackknife methods for truncated data 截取資料之摺刀法 Meng-Fu Shih 施孟甫 碩士 東海大學 統計學系 88 Let $X$ and $Y$ be two independent positive random variables with survival functions $\bar F$ and $\bar G$, respectively. Under random truncation, $X$ and $Y$ are both observable only when $X\ge Y$. The nonparametric MLE of $\bar F (x)$, $\bar F_n (x) =1-F_n (x)= 1-\prod_{z\le x} [1-d\Lambda_n (z)]$, was derived by Lynden-Bell (1971), where $\Lambda_n (z)$ is the estimated cumulative hazard function. In this note, we derive an explicit formula for the delete-d jackknife estimate of $\Lambda_{n} (z)$. From this it is demonstrated that jackknifing may lead to a reduction of the bias. Besides, it is shown that the delete-1 jackknife variance estimator of $\bar F_n (x)$ consistently estimates the limit variance. Pao-Sheng Shen 沈葆聖 2000 學位論文 ; thesis 14 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 東海大學 === 統計學系 === 88 === Let $X$ and $Y$ be two independent positive random variables with survival functions $\bar F$ and $\bar G$, respectively. Under random truncation, $X$ and $Y$ are both observable only when $X\ge Y$. The nonparametric MLE of $\bar F (x)$, $\bar F_n (x) =1-F_n (x)= 1-\prod_{z\le x} [1-d\Lambda_n (z)]$, was derived by Lynden-Bell (1971), where $\Lambda_n (z)$ is the estimated cumulative hazard function. In this note, we derive an explicit formula for the delete-d jackknife estimate of $\Lambda_{n} (z)$. From this it is demonstrated that jackknifing may lead to a reduction of the bias. Besides, it is shown that the delete-1 jackknife variance estimator of $\bar F_n (x)$ consistently estimates the limit variance.
author2 Pao-Sheng Shen
author_facet Pao-Sheng Shen
Meng-Fu Shih
施孟甫
author Meng-Fu Shih
施孟甫
spellingShingle Meng-Fu Shih
施孟甫
Jackknife methods for truncated data
author_sort Meng-Fu Shih
title Jackknife methods for truncated data
title_short Jackknife methods for truncated data
title_full Jackknife methods for truncated data
title_fullStr Jackknife methods for truncated data
title_full_unstemmed Jackknife methods for truncated data
title_sort jackknife methods for truncated data
publishDate 2000
url http://ndltd.ncl.edu.tw/handle/03127270794409125599
work_keys_str_mv AT mengfushih jackknifemethodsfortruncateddata
AT shīmèngfǔ jackknifemethodsfortruncateddata
AT mengfushih jiéqǔzīliàozhīzhédāofǎ
AT shīmèngfǔ jiéqǔzīliàozhīzhédāofǎ
_version_ 1718168720475422720