Jackknife methods for truncated data
碩士 === 東海大學 === 統計學系 === 88 === Let $X$ and $Y$ be two independent positive random variables with survival functions $\bar F$ and $\bar G$, respectively. Under random truncation, $X$ and $Y$ are both observable only when $X\ge Y$. The nonparametric MLE of $\bar F (x)$, $\bar F_n (x) =1-F_...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2000
|
Online Access: | http://ndltd.ncl.edu.tw/handle/03127270794409125599 |
id |
ndltd-TW-088THU00337001 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-088THU003370012016-01-29T04:19:17Z http://ndltd.ncl.edu.tw/handle/03127270794409125599 Jackknife methods for truncated data 截取資料之摺刀法 Meng-Fu Shih 施孟甫 碩士 東海大學 統計學系 88 Let $X$ and $Y$ be two independent positive random variables with survival functions $\bar F$ and $\bar G$, respectively. Under random truncation, $X$ and $Y$ are both observable only when $X\ge Y$. The nonparametric MLE of $\bar F (x)$, $\bar F_n (x) =1-F_n (x)= 1-\prod_{z\le x} [1-d\Lambda_n (z)]$, was derived by Lynden-Bell (1971), where $\Lambda_n (z)$ is the estimated cumulative hazard function. In this note, we derive an explicit formula for the delete-d jackknife estimate of $\Lambda_{n} (z)$. From this it is demonstrated that jackknifing may lead to a reduction of the bias. Besides, it is shown that the delete-1 jackknife variance estimator of $\bar F_n (x)$ consistently estimates the limit variance. Pao-Sheng Shen 沈葆聖 2000 學位論文 ; thesis 14 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 東海大學 === 統計學系 === 88 === Let $X$ and $Y$ be two independent positive random variables with survival functions $\bar F$ and $\bar G$, respectively. Under random truncation, $X$ and $Y$ are both observable only when $X\ge Y$. The nonparametric MLE of $\bar F (x)$, $\bar F_n (x) =1-F_n (x)= 1-\prod_{z\le x} [1-d\Lambda_n (z)]$, was derived by Lynden-Bell (1971), where $\Lambda_n (z)$ is the estimated cumulative hazard function. In this note, we derive an explicit formula for the delete-d jackknife estimate of $\Lambda_{n} (z)$. From this it is demonstrated that jackknifing may lead to a reduction of the bias. Besides, it is shown that the delete-1 jackknife variance estimator of $\bar F_n (x)$ consistently estimates the limit variance.
|
author2 |
Pao-Sheng Shen |
author_facet |
Pao-Sheng Shen Meng-Fu Shih 施孟甫 |
author |
Meng-Fu Shih 施孟甫 |
spellingShingle |
Meng-Fu Shih 施孟甫 Jackknife methods for truncated data |
author_sort |
Meng-Fu Shih |
title |
Jackknife methods for truncated data |
title_short |
Jackknife methods for truncated data |
title_full |
Jackknife methods for truncated data |
title_fullStr |
Jackknife methods for truncated data |
title_full_unstemmed |
Jackknife methods for truncated data |
title_sort |
jackknife methods for truncated data |
publishDate |
2000 |
url |
http://ndltd.ncl.edu.tw/handle/03127270794409125599 |
work_keys_str_mv |
AT mengfushih jackknifemethodsfortruncateddata AT shīmèngfǔ jackknifemethodsfortruncateddata AT mengfushih jiéqǔzīliàozhīzhédāofǎ AT shīmèngfǔ jiéqǔzīliàozhīzhédāofǎ |
_version_ |
1718168720475422720 |