Changes in Cytokinin and Gibberellin Levels Before, During and After Floral Initiation in Polianthes tuberosa

碩士 === 國立中山大學 === 生物科學系研究所 === 88 === We studied how the endogenous and exogenous cytokinin and gibberellin functions in floral initiation and development in tuberose. In the aspect of cytokinins. The contents of endogenous cytokinin in tuberose corms (Polianthes tuberosa L. cv. Double) at vegetativ...

Full description

Bibliographic Details
Main Authors: Shuo-Tsang Chang, 張碩蒼
Other Authors: Wen-Shaw Chang
Format: Others
Language:zh-TW
Published: 2000
Online Access:http://ndltd.ncl.edu.tw/handle/77126521420774176539
Description
Summary:碩士 === 國立中山大學 === 生物科學系研究所 === 88 === We studied how the endogenous and exogenous cytokinin and gibberellin functions in floral initiation and development in tuberose. In the aspect of cytokinins. The contents of endogenous cytokinin in tuberose corms (Polianthes tuberosa L. cv. Double) at vegetative, early floral initiation, and flower development stages were investigated. We also determined the influence of exogenous cytokinin treatment on the corm apex at three different growth stages in relation to floral initiation and development in tuberose. The exogenous cytokinin effectively induced floral initiation and development, especially at the early floral initiation and flower development stages. Endogenous cytokinins were higher in early floral initiation and development stages in comparison to the vegetative stage. During floral initiation stage, the zeatin and dihydrozeatin increased significantly, while the cytokinins, zeatin riboside, dihydrozeatin riboside, 6N-(δ2-isopentenyl) adenine, and 6N-(δ2-isope -ntenyl) adenine riboside at consistently low levels. The increase of cytokinin levels in tuberose corms during floral induction suggests a role for cytokinins in tuberose apex evocation. Moreover, these results indicate that cytokinins seem to promote the development of flower buds rather than inducing flowering in tuberose. Endogenous gibberellins (GAs) in tuberose corms were isolated using high performance liquid chromatography, bioassay and identified by combined capillary gas chromatography-mass spectrumetry. Gibber -ellins A19, A20 and A53 were quantified at the vegetative, early floral initiation and flower differentiation stages. The identification of these 13-hydroxylated GAs indicates the presence of the early-13-hydroxy -lation in tuberose corms. An increase in GA20 and decrease in GA19 coincided with the transition from the vegetative phase to the stages of early floral initiation and flower differentiation. GA53 maintained at constant levels at three different growth stages. When GA3, GA4, GA20 and GA32 were applied to corms at vegetative stage (plants about 5 cm in height ), floral initiation was induced and/or promoted by several, most notably by GA3, GA20 and GA32. It is suggest that hydroxylated C-19 GAs play an important role in flower induction in tuberose.