THE PERIODIC SOLUTIONS OF THE GBBM EQUATION
碩士 === 國立高雄師範大學 === 數學系 === 88 === In this paper, we use the Green function method to study periodic traveling wave solutions of the GBBM equation u_t+(f_0(u))_x-σu_{xxt}=0, where σ>0 is a constant and f_0(u) is a differentiable function in R. Through the construction of an explicit Gr...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2000
|
Online Access: | http://ndltd.ncl.edu.tw/handle/85892315749912629690 |
id |
ndltd-TW-088NKNU0479003 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-088NKNU04790032016-07-08T04:22:56Z http://ndltd.ncl.edu.tw/handle/85892315749912629690 THE PERIODIC SOLUTIONS OF THE GBBM EQUATION GBBM方程週期解之研究 Wen-Bin Lin 林文彬 碩士 國立高雄師範大學 數學系 88 In this paper, we use the Green function method to study periodic traveling wave solutions of the GBBM equation u_t+(f_0(u))_x-σu_{xxt}=0, where σ>0 is a constant and f_0(u) is a differentiable function in R. Through the construction of an explicit Green function it is shown that the perodic boundary-value problem for the periodic wave solution of the GBBM equation is equivalent to an integral equation with a symmetrical kernel which generates a compact operator in the space of periodic functions. Finally, this integral representation leads to the existence of a periodic traveling wave solution for an associated inhomogeneous GBBM equation u_t+(f_0(u))_x-σu_{xxt}=h(x-β_{0}t), where h is a given 2T-periodic function of ξ≡x-β_{0}t for some fixedβ_0>0. Tai-Cheng Tso 左太政 2000 學位論文 ; thesis 18 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立高雄師範大學 === 數學系 === 88 === In this paper, we use the Green function method to study periodic traveling wave solutions of the GBBM equation u_t+(f_0(u))_x-σu_{xxt}=0, where σ>0 is a constant and f_0(u) is a differentiable function in R. Through the construction of an explicit Green function it is shown that the perodic boundary-value problem for the periodic wave solution of the GBBM equation is equivalent to an integral equation with a symmetrical kernel which generates a compact operator in the space of periodic functions. Finally, this integral representation leads to the existence of a periodic traveling wave solution for an associated inhomogeneous GBBM equation u_t+(f_0(u))_x-σu_{xxt}=h(x-β_{0}t), where h is a given 2T-periodic function of ξ≡x-β_{0}t for some fixedβ_0>0.
|
author2 |
Tai-Cheng Tso |
author_facet |
Tai-Cheng Tso Wen-Bin Lin 林文彬 |
author |
Wen-Bin Lin 林文彬 |
spellingShingle |
Wen-Bin Lin 林文彬 THE PERIODIC SOLUTIONS OF THE GBBM EQUATION |
author_sort |
Wen-Bin Lin |
title |
THE PERIODIC SOLUTIONS OF THE GBBM EQUATION |
title_short |
THE PERIODIC SOLUTIONS OF THE GBBM EQUATION |
title_full |
THE PERIODIC SOLUTIONS OF THE GBBM EQUATION |
title_fullStr |
THE PERIODIC SOLUTIONS OF THE GBBM EQUATION |
title_full_unstemmed |
THE PERIODIC SOLUTIONS OF THE GBBM EQUATION |
title_sort |
periodic solutions of the gbbm equation |
publishDate |
2000 |
url |
http://ndltd.ncl.edu.tw/handle/85892315749912629690 |
work_keys_str_mv |
AT wenbinlin theperiodicsolutionsofthegbbmequation AT línwénbīn theperiodicsolutionsofthegbbmequation AT wenbinlin gbbmfāngchéngzhōuqījiězhīyánjiū AT línwénbīn gbbmfāngchéngzhōuqījiězhīyánjiū AT wenbinlin periodicsolutionsofthegbbmequation AT línwénbīn periodicsolutionsofthegbbmequation |
_version_ |
1718340655930933248 |