THE PERIODIC SOLUTIONS OF THE GBBM EQUATION

碩士 === 國立高雄師範大學 === 數學系 === 88 === In this paper, we use the Green function method to study periodic traveling wave solutions of the GBBM equation u_t+(f_0(u))_x-σu_{xxt}=0, where σ>0 is a constant and f_0(u) is a differentiable function in R. Through the construction of an explicit Gr...

Full description

Bibliographic Details
Main Authors: Wen-Bin Lin, 林文彬
Other Authors: Tai-Cheng Tso
Format: Others
Language:zh-TW
Published: 2000
Online Access:http://ndltd.ncl.edu.tw/handle/85892315749912629690
id ndltd-TW-088NKNU0479003
record_format oai_dc
spelling ndltd-TW-088NKNU04790032016-07-08T04:22:56Z http://ndltd.ncl.edu.tw/handle/85892315749912629690 THE PERIODIC SOLUTIONS OF THE GBBM EQUATION GBBM方程週期解之研究 Wen-Bin Lin 林文彬 碩士 國立高雄師範大學 數學系 88 In this paper, we use the Green function method to study periodic traveling wave solutions of the GBBM equation u_t+(f_0(u))_x-σu_{xxt}=0, where σ>0 is a constant and f_0(u) is a differentiable function in R. Through the construction of an explicit Green function it is shown that the perodic boundary-value problem for the periodic wave solution of the GBBM equation is equivalent to an integral equation with a symmetrical kernel which generates a compact operator in the space of periodic functions. Finally, this integral representation leads to the existence of a periodic traveling wave solution for an associated inhomogeneous GBBM equation u_t+(f_0(u))_x-σu_{xxt}=h(x-β_{0}t), where h is a given 2T-periodic function of ξ≡x-β_{0}t for some fixedβ_0>0. Tai-Cheng Tso 左太政 2000 學位論文 ; thesis 18 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立高雄師範大學 === 數學系 === 88 === In this paper, we use the Green function method to study periodic traveling wave solutions of the GBBM equation u_t+(f_0(u))_x-σu_{xxt}=0, where σ>0 is a constant and f_0(u) is a differentiable function in R. Through the construction of an explicit Green function it is shown that the perodic boundary-value problem for the periodic wave solution of the GBBM equation is equivalent to an integral equation with a symmetrical kernel which generates a compact operator in the space of periodic functions. Finally, this integral representation leads to the existence of a periodic traveling wave solution for an associated inhomogeneous GBBM equation u_t+(f_0(u))_x-σu_{xxt}=h(x-β_{0}t), where h is a given 2T-periodic function of ξ≡x-β_{0}t for some fixedβ_0>0.
author2 Tai-Cheng Tso
author_facet Tai-Cheng Tso
Wen-Bin Lin
林文彬
author Wen-Bin Lin
林文彬
spellingShingle Wen-Bin Lin
林文彬
THE PERIODIC SOLUTIONS OF THE GBBM EQUATION
author_sort Wen-Bin Lin
title THE PERIODIC SOLUTIONS OF THE GBBM EQUATION
title_short THE PERIODIC SOLUTIONS OF THE GBBM EQUATION
title_full THE PERIODIC SOLUTIONS OF THE GBBM EQUATION
title_fullStr THE PERIODIC SOLUTIONS OF THE GBBM EQUATION
title_full_unstemmed THE PERIODIC SOLUTIONS OF THE GBBM EQUATION
title_sort periodic solutions of the gbbm equation
publishDate 2000
url http://ndltd.ncl.edu.tw/handle/85892315749912629690
work_keys_str_mv AT wenbinlin theperiodicsolutionsofthegbbmequation
AT línwénbīn theperiodicsolutionsofthegbbmequation
AT wenbinlin gbbmfāngchéngzhōuqījiězhīyánjiū
AT línwénbīn gbbmfāngchéngzhōuqījiězhīyánjiū
AT wenbinlin periodicsolutionsofthegbbmequation
AT línwénbīn periodicsolutionsofthegbbmequation
_version_ 1718340655930933248