Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains

碩士 === 國立交通大學 === 應用數學系 === 88 === We consider the following quasilinear elliptic problem in a bounded smooth domain $\Omega$ of $R^N$, $N\ge 3$:$$\left\{ \begin{array}{lrc} Lu=\displaystyle\sum_{i,j=1}^{N}a_{ij}(x,u)\frac{{\partial}^{2}u}{\partial x_i\par...

Full description

Bibliographic Details
Main Authors: Fan-Hsuan Lai, 賴凡暄
Other Authors: Tsang-Hai Kuo
Format: Others
Language:en_US
Published: 2000
Online Access:http://ndltd.ncl.edu.tw/handle/51401181772311998639
id ndltd-TW-088NCTU0507005
record_format oai_dc
spelling ndltd-TW-088NCTU05070052016-07-08T04:22:40Z http://ndltd.ncl.edu.tw/handle/51401181772311998639 Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains 有界平滑區域上擬線性橢圓型問題強解的存在性 Fan-Hsuan Lai 賴凡暄 碩士 國立交通大學 應用數學系 88 We consider the following quasilinear elliptic problem in a bounded smooth domain $\Omega$ of $R^N$, $N\ge 3$:$$\left\{ \begin{array}{lrc} Lu=\displaystyle\sum_{i,j=1}^{N}a_{ij}(x,u)\frac{{\partial}^{2}u}{\partial x_i\partial x_j}+\sum_{i=1}^{N}b_{i}(x,u)\frac{{\partial}u}{\partial x_i}+c(x,u)u=f(x,u,\nabla u)& \mbox{in $\Omega$,}\\\\ u=0 & \mbox{on $\partial \Omega$,} \end{array} \right.$$where $|f(x,r,\xi)| \le b(|r|)(1 + |\xi|^{\theta}),$\,\,\,\,\,\,\,\,\,\,\,$0 \leq \theta < \frac{32}{(N+2)^{2}}$ ,\,\,\,\,\, here $\lim\limits_{|r| \rightarrow +\infty} \frac{b(| r|)}{| r|^{\gamma}} = 0 $ for $\gamma = 1$. The oscillations of $a_{ij}=a_{ij}(x,r)$ with respect to $r$ are sufficiently small. Then there exists a strong solution $u\in W^{2,p}(\Omega)\cap W^{1,p}_{0}(\Omega)$ for $L u = f(x,u,\nabla u)$.\\ \hspace*{\parindent}Next, we study the following quasilinear elliptic problem : $$L_{0}u= - \sum_{i,j=1}^{N}\frac{\partial}{\partial x_{i} }(a_{ij}(x,u)\frac{\partial u}{\partial x_j}) = -g(x,u,\nabla u) \quad \mbox{in $\Omega$,}$$where $g$ satisfies one-sided condition and the growth condition $$ |g(x,r,\xi)| \leq h(|r|) + k|r|^{\mu}|\xi|^{\nu}, \quad \mu + \nu = \theta, 0 \leq \theta < \frac{4}{N} $$ where $\lim\limits_{|r|\rightarrow +\infty} \frac{h(|r|)}{|r|^{\gamma}} = 0$ for some $ \gamma < \frac{N+2}{N-2}$. Then there exists a strong solution $u\in W^{2,p}(\Omega)\cap W^{1,p}_{0}(\Omega)$ for $L_{0} u + g(x,u,\nabla u)=0$. Tsang-Hai Kuo 郭滄海 2000 學位論文 ; thesis 24 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立交通大學 === 應用數學系 === 88 === We consider the following quasilinear elliptic problem in a bounded smooth domain $\Omega$ of $R^N$, $N\ge 3$:$$\left\{ \begin{array}{lrc} Lu=\displaystyle\sum_{i,j=1}^{N}a_{ij}(x,u)\frac{{\partial}^{2}u}{\partial x_i\partial x_j}+\sum_{i=1}^{N}b_{i}(x,u)\frac{{\partial}u}{\partial x_i}+c(x,u)u=f(x,u,\nabla u)& \mbox{in $\Omega$,}\\\\ u=0 & \mbox{on $\partial \Omega$,} \end{array} \right.$$where $|f(x,r,\xi)| \le b(|r|)(1 + |\xi|^{\theta}),$\,\,\,\,\,\,\,\,\,\,\,$0 \leq \theta < \frac{32}{(N+2)^{2}}$ ,\,\,\,\,\, here $\lim\limits_{|r| \rightarrow +\infty} \frac{b(| r|)}{| r|^{\gamma}} = 0 $ for $\gamma = 1$. The oscillations of $a_{ij}=a_{ij}(x,r)$ with respect to $r$ are sufficiently small. Then there exists a strong solution $u\in W^{2,p}(\Omega)\cap W^{1,p}_{0}(\Omega)$ for $L u = f(x,u,\nabla u)$.\\ \hspace*{\parindent}Next, we study the following quasilinear elliptic problem : $$L_{0}u= - \sum_{i,j=1}^{N}\frac{\partial}{\partial x_{i} }(a_{ij}(x,u)\frac{\partial u}{\partial x_j}) = -g(x,u,\nabla u) \quad \mbox{in $\Omega$,}$$where $g$ satisfies one-sided condition and the growth condition $$ |g(x,r,\xi)| \leq h(|r|) + k|r|^{\mu}|\xi|^{\nu}, \quad \mu + \nu = \theta, 0 \leq \theta < \frac{4}{N} $$ where $\lim\limits_{|r|\rightarrow +\infty} \frac{h(|r|)}{|r|^{\gamma}} = 0$ for some $ \gamma < \frac{N+2}{N-2}$. Then there exists a strong solution $u\in W^{2,p}(\Omega)\cap W^{1,p}_{0}(\Omega)$ for $L_{0} u + g(x,u,\nabla u)=0$.
author2 Tsang-Hai Kuo
author_facet Tsang-Hai Kuo
Fan-Hsuan Lai
賴凡暄
author Fan-Hsuan Lai
賴凡暄
spellingShingle Fan-Hsuan Lai
賴凡暄
Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains
author_sort Fan-Hsuan Lai
title Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains
title_short Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains
title_full Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains
title_fullStr Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains
title_full_unstemmed Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains
title_sort existence of strong solutions for certain quasilinear elliptic problem on bounded smooth domains
publishDate 2000
url http://ndltd.ncl.edu.tw/handle/51401181772311998639
work_keys_str_mv AT fanhsuanlai existenceofstrongsolutionsforcertainquasilinearellipticproblemonboundedsmoothdomains
AT làifánxuān existenceofstrongsolutionsforcertainquasilinearellipticproblemonboundedsmoothdomains
AT fanhsuanlai yǒujièpínghuáqūyùshàngnǐxiànxìngtuǒyuánxíngwèntíqiángjiědecúnzàixìng
AT làifánxuān yǒujièpínghuáqūyùshàngnǐxiànxìngtuǒyuánxíngwèntíqiángjiědecúnzàixìng
_version_ 1718339600665018368