Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains
碩士 === 國立交通大學 === 應用數學系 === 88 === We consider the following quasilinear elliptic problem in a bounded smooth domain $\Omega$ of $R^N$, $N\ge 3$:$$\left\{ \begin{array}{lrc} Lu=\displaystyle\sum_{i,j=1}^{N}a_{ij}(x,u)\frac{{\partial}^{2}u}{\partial x_i\par...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2000
|
Online Access: | http://ndltd.ncl.edu.tw/handle/51401181772311998639 |
id |
ndltd-TW-088NCTU0507005 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-088NCTU05070052016-07-08T04:22:40Z http://ndltd.ncl.edu.tw/handle/51401181772311998639 Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains 有界平滑區域上擬線性橢圓型問題強解的存在性 Fan-Hsuan Lai 賴凡暄 碩士 國立交通大學 應用數學系 88 We consider the following quasilinear elliptic problem in a bounded smooth domain $\Omega$ of $R^N$, $N\ge 3$:$$\left\{ \begin{array}{lrc} Lu=\displaystyle\sum_{i,j=1}^{N}a_{ij}(x,u)\frac{{\partial}^{2}u}{\partial x_i\partial x_j}+\sum_{i=1}^{N}b_{i}(x,u)\frac{{\partial}u}{\partial x_i}+c(x,u)u=f(x,u,\nabla u)& \mbox{in $\Omega$,}\\\\ u=0 & \mbox{on $\partial \Omega$,} \end{array} \right.$$where $|f(x,r,\xi)| \le b(|r|)(1 + |\xi|^{\theta}),$\,\,\,\,\,\,\,\,\,\,\,$0 \leq \theta < \frac{32}{(N+2)^{2}}$ ,\,\,\,\,\, here $\lim\limits_{|r| \rightarrow +\infty} \frac{b(| r|)}{| r|^{\gamma}} = 0 $ for $\gamma = 1$. The oscillations of $a_{ij}=a_{ij}(x,r)$ with respect to $r$ are sufficiently small. Then there exists a strong solution $u\in W^{2,p}(\Omega)\cap W^{1,p}_{0}(\Omega)$ for $L u = f(x,u,\nabla u)$.\\ \hspace*{\parindent}Next, we study the following quasilinear elliptic problem : $$L_{0}u= - \sum_{i,j=1}^{N}\frac{\partial}{\partial x_{i} }(a_{ij}(x,u)\frac{\partial u}{\partial x_j}) = -g(x,u,\nabla u) \quad \mbox{in $\Omega$,}$$where $g$ satisfies one-sided condition and the growth condition $$ |g(x,r,\xi)| \leq h(|r|) + k|r|^{\mu}|\xi|^{\nu}, \quad \mu + \nu = \theta, 0 \leq \theta < \frac{4}{N} $$ where $\lim\limits_{|r|\rightarrow +\infty} \frac{h(|r|)}{|r|^{\gamma}} = 0$ for some $ \gamma < \frac{N+2}{N-2}$. Then there exists a strong solution $u\in W^{2,p}(\Omega)\cap W^{1,p}_{0}(\Omega)$ for $L_{0} u + g(x,u,\nabla u)=0$. Tsang-Hai Kuo 郭滄海 2000 學位論文 ; thesis 24 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立交通大學 === 應用數學系 === 88 === We consider the following quasilinear elliptic
problem in a bounded smooth domain $\Omega$ of $R^N$, $N\ge
3$:$$\left\{
\begin{array}{lrc}
Lu=\displaystyle\sum_{i,j=1}^{N}a_{ij}(x,u)\frac{{\partial}^{2}u}{\partial x_i\partial
x_j}+\sum_{i=1}^{N}b_{i}(x,u)\frac{{\partial}u}{\partial x_i}+c(x,u)u=f(x,u,\nabla u)& \mbox{in
$\Omega$,}\\\\ u=0 & \mbox{on $\partial \Omega$,}
\end{array}
\right.$$where $|f(x,r,\xi)| \le b(|r|)(1 +
|\xi|^{\theta}),$\,\,\,\,\,\,\,\,\,\,\,$0 \leq \theta <
\frac{32}{(N+2)^{2}}$ ,\,\,\,\,\, here $\lim\limits_{|r|
\rightarrow +\infty} \frac{b(| r|)}{| r|^{\gamma}} = 0 $ for
$\gamma = 1$. The oscillations of $a_{ij}=a_{ij}(x,r)$ with
respect to $r$ are sufficiently small. Then there exists a strong
solution $u\in W^{2,p}(\Omega)\cap W^{1,p}_{0}(\Omega)$ for $L u =
f(x,u,\nabla u)$.\\ \hspace*{\parindent}Next, we study the
following quasilinear elliptic problem : $$L_{0}u= -
\sum_{i,j=1}^{N}\frac{\partial}{\partial x_{i}
}(a_{ij}(x,u)\frac{\partial u}{\partial x_j}) = -g(x,u,\nabla u)
\quad \mbox{in $\Omega$,}$$where $g$ satisfies one-sided
condition and the growth condition $$ |g(x,r,\xi)| \leq h(|r|) +
k|r|^{\mu}|\xi|^{\nu}, \quad \mu + \nu = \theta, 0 \leq \theta <
\frac{4}{N} $$ where $\lim\limits_{|r|\rightarrow +\infty}
\frac{h(|r|)}{|r|^{\gamma}} = 0$ for some $ \gamma <
\frac{N+2}{N-2}$. Then there exists a strong solution $u\in
W^{2,p}(\Omega)\cap W^{1,p}_{0}(\Omega)$ for $L_{0} u +
g(x,u,\nabla u)=0$.
|
author2 |
Tsang-Hai Kuo |
author_facet |
Tsang-Hai Kuo Fan-Hsuan Lai 賴凡暄 |
author |
Fan-Hsuan Lai 賴凡暄 |
spellingShingle |
Fan-Hsuan Lai 賴凡暄 Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains |
author_sort |
Fan-Hsuan Lai |
title |
Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains |
title_short |
Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains |
title_full |
Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains |
title_fullStr |
Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains |
title_full_unstemmed |
Existence of Strong Solutions for Certain Quasilinear Elliptic Problem on Bounded Smooth Domains |
title_sort |
existence of strong solutions for certain quasilinear elliptic problem on bounded smooth domains |
publishDate |
2000 |
url |
http://ndltd.ncl.edu.tw/handle/51401181772311998639 |
work_keys_str_mv |
AT fanhsuanlai existenceofstrongsolutionsforcertainquasilinearellipticproblemonboundedsmoothdomains AT làifánxuān existenceofstrongsolutionsforcertainquasilinearellipticproblemonboundedsmoothdomains AT fanhsuanlai yǒujièpínghuáqūyùshàngnǐxiànxìngtuǒyuánxíngwèntíqiángjiědecúnzàixìng AT làifánxuān yǒujièpínghuáqūyùshàngnǐxiànxìngtuǒyuánxíngwèntíqiángjiědecúnzàixìng |
_version_ |
1718339600665018368 |