Computing the Eigenproblem of a Real Orthogonal Matrix
碩士 === 國立政治大學 === 應用數學系 === 88 === Let H be an orthogonal Hessenberg matrix whose eigenvalues, and possibly eigenvectors, are to be determined. Then H can be represented in Schur parametric form [2]. Following Ammar, Gragg, and Reichel's paper [1], we compute the eigenproblem of H by...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2000
|
Online Access: | http://ndltd.ncl.edu.tw/handle/44844048485434990689 |
Summary: | 碩士 === 國立政治大學 === 應用數學系 === 88 === Let H be an orthogonal Hessenberg matrix whose eigenvalues, and possibly eigenvectors, are to be determined. Then H can be represented in Schur parametric form [2]. Following Ammar, Gragg, and Reichel's paper [1], we compute the eigenproblem of H by finding the singular values (and vectors) of two bidiagonal matrices whose elements are explicitly known functions of the Schur parameters. We compare the accuracy and speed of our programs using the method described aboved with those in CLAPACK. Numerical results conclude this thesis.
|
---|