Magnetoresistance and Hall effect of SrRuO3 and SrRuO3 /YBaCu3O7-x thin films

碩士 === 國立臺灣大學 === 物理學研究所 === 87 === Abstract We report the magnetization, magneto-resistance and Hall coefficient of epitaxial SrRuO3 films n SrTiO3 (110) and (001) substrates under varied temperatures and magnetic fields in paramagnetic and ferromagne...

Full description

Bibliographic Details
Main Authors: Liu, Shu-Huei, 劉淑惠
Other Authors: 楊鴻昌
Format: Others
Language:zh-TW
Published: 1999
Online Access:http://ndltd.ncl.edu.tw/handle/32750008416744742093
Description
Summary:碩士 === 國立臺灣大學 === 物理學研究所 === 87 === Abstract We report the magnetization, magneto-resistance and Hall coefficient of epitaxial SrRuO3 films n SrTiO3 (110) and (001) substrates under varied temperatures and magnetic fields in paramagnetic and ferromagnetic states. The SrRuO3 films were grown in-situ by the radio frequency magnetron sputtering technique. The Hall coefficient RH is positive when the temperature is greater than the sign reversal temperature, Tr and reverts to negative when the temperature is below Tr. The Hall resistivity rxy in the paramagnetic state follows the behavior (1 - T/TC)-1. The spontaneous Hall coefficient Rs is negative when the temperature is below T = 130 K. We used the theory of the spontaneous Hall coefficient proposed by Kondo in the paramagnetic state and the theory of the spontaneous Hall coefficient proposed by Irkhin etal. in the ferromagnetic state to discuss its temperature behavior. The analyzed data suggest that the mixed interaction of spin-orbital o f the magnetic electrons in SrRuO3 films play an essential role in the occurrence of the negative value of Rs. On the other hand, YBa2Cu3O7-X/SrRuO3 (96 nm/96 nm) film show ferromagnetic transition at T ~150 K and is superconducting at T = 35 K. The Hall coefficient, RH, is positive at high temperature (T > 125 K). In the negative Hall coefficient regime, the RH decreases and enters a local minimum and reverts to zero at low temperatures for YBa2Cu3O7-X/SrRuO3 films. The pinning characteristic of YBa2Cu3O7-X/SrRuO3 films was discussed in terms of the exiting pinning theories. 1. J. Kondo, Prog. Theoeret. Phys., (Japan) 27, 772 (1962). 2. Yu. P. Irkhin et al., Phys. Stat. Sol. 22, 309, (1967).