血青素模型錯合物的研究:N,N-雙(苯咪唑-2-甲基)胺之二價銅混合配子錯合物的合成、結構及鍵結性質研究

碩士 === 國立臺灣師範大學 === 化學研究所 === 87 === Four mixed ligand copper (II) complexes, [Cu(dipica)(acac)](ClO4)(1), [Cu(CH3bimmaCH3)(acac)](Et3NH)(H2O)(ClO4)2(2), [Cu(CH3bimmaCH3)(CH3CN)](ClO4)2(3) and [Cu(CH3bimmaCH3)(phen)]-(ClO4)2(4), where dipica = dipicolylamine, CH3bimmaCH3 = N,N-bis(1-methy...

Full description

Bibliographic Details
Main Authors: TAI TSAI YUN, 戴彩雲
Other Authors: SU CHAN CHENG
Format: Others
Language:zh-TW
Published: 1999
Online Access:http://ndltd.ncl.edu.tw/handle/71283738445469628820
Description
Summary:碩士 === 國立臺灣師範大學 === 化學研究所 === 87 === Four mixed ligand copper (II) complexes, [Cu(dipica)(acac)](ClO4)(1), [Cu(CH3bimmaCH3)(acac)](Et3NH)(H2O)(ClO4)2(2), [Cu(CH3bimmaCH3)(CH3CN)](ClO4)2(3) and [Cu(CH3bimmaCH3)(phen)]-(ClO4)2(4), where dipica = dipicolylamine, CH3bimmaCH3 = N,N-bis(1-methylbenzimidazol-2-ylmethyl)methylamine, acac = acetylacetonate, phen = 1,10-phenanthroline, have been synthesized and characterized by elemental analyses, infrared, electronic, and epr spectroscopic measurements. By single-crystal X-ray diffraction method, the crystal and molecular structures of [Cu(dipica)(acac)](ClO4)(1), [Cu(CH3bimmaCH3)(acac)]-(Et3NH)(H2O)(ClO4)2(2) and [Cu(CH3bimmaCH3)(CH3CN)](ClO4)2(3) have been determined. The crystal data of these complexes are described below: (a) [Cu(dipica)(acac)](ClO4)(1) crystallizes in the triclinic, space group PT with a = 7.2374(2) A, b = 11.3015(2) A, c = 13.5843(2) A,  = 65.702(1)°,  = 79.625(1)°,  = 82.243(1)°, Z = 2, R = 0.0376 and Rw = 0.0377. (b) [Cu(CH3bimmaCH3)(acac)](Et3NH)(H2O)(ClO4)2(2) crystallizes in the triclinic, space group PT with a = 12.1122(12) A, b = 12.9011(12) A, c = 14.7641(14) A,  = 64.476(2)°,  = 67.479(2)°,  = 75.567(2)°, Z = 2, R = 0.0813 and Rw = 0.2084. (c) [Cu(CH3bimmaCH3)(CH3CN)](ClO4)2 (3) crystallizes in the monoclinic, space group P21/c with a = 11.243(3) A, b = 12.1801(21) A, c = 19.099(3) A,  = 104.119(22)°, Z = 4, R = 0.057 and Rw = 0.053. The solution LF spectra of these complexes were deconvoluted into Gaussian component bands. The results were employed to interpret the electronic and bonding properties of the copper (II) complexes. The sequences of d orbitals were assigned as following: (a) (1) and (2): dxy >> dz2 > dx2-y2 > dyz > dxz (b) (3): dx2-y2 >> dxy > dxz , dyz > dz2 (c) (4): dx2-y2 >> dz2 > dxy > dxz , dyz In conclusion, the tridentate ligands, dipica and CH3bimmaCH3, tend to bind to copper (II) with a facial configuration when the other binding ligand is acac. The configurations of the tridentate ligands are dependent on the coordination capabilities of other ligands presented in the complexes.