A Palais-Smale Approach to Lane-Emden Equations

碩士 === 國立清華大學 === 數學系 === 87 === Chen-Lee-Wang [5], Chen-Wang [6], and Lien-Tzeng-Wang [14] asserted the existence of a ground state solution of equation (UD) in interior flask domains $\Bbb D_{s}^{r}$ : there exists $s_{0}>0$ such that the index $\alpha (\Bbb D_{s}^{r})$\ admits a gr...

Full description

Bibliographic Details
Main Authors: Huei-Li Lin, 林惠莉
Other Authors: Hwai-Chiaun Wang
Format: Others
Language:en_US
Published: 1999
Online Access:http://ndltd.ncl.edu.tw/handle/84705845795015514792
id ndltd-TW-087NTHU0479020
record_format oai_dc
spelling ndltd-TW-087NTHU04790202015-10-13T11:46:55Z http://ndltd.ncl.edu.tw/handle/84705845795015514792 A Palais-Smale Approach to Lane-Emden Equations 用巴萊斯麥爾法解蘭愛梅登方程 Huei-Li Lin 林惠莉 碩士 國立清華大學 數學系 87 Chen-Lee-Wang [5], Chen-Wang [6], and Lien-Tzeng-Wang [14] asserted the existence of a ground state solution of equation (UD) in interior flask domains $\Bbb D_{s}^{r}$ : there exists $s_{0}>0$ such that the index $\alpha (\Bbb D_{s}^{r})$\ admits a ground state solution if $s>s_{0}$, but $\alpha (\ Bbb D_{s}^{r})$ does not admit any ground state solution if $s<s_{0}$. There is an open question: is $s_{0}=r$? In this article, we establish an index comparison criterion, then use the criterion to assert that there exists a ground state solution of equation (UD) in a flat interior flask domain : the Esteban-Lions domain $\Bbb {S}_{0}^{r}$ by adding an arbitrary small width but sufficient long corridor. We also establish the asymptotic behavior, the symmetry, and the algorithms and visualization of each solution of equation (UD) in the interior flask domain $\ Bbb D_{s}^{r}$. Hwai-Chiaun Wang 王懷權 1999 學位論文 ; thesis 19 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立清華大學 === 數學系 === 87 === Chen-Lee-Wang [5], Chen-Wang [6], and Lien-Tzeng-Wang [14] asserted the existence of a ground state solution of equation (UD) in interior flask domains $\Bbb D_{s}^{r}$ : there exists $s_{0}>0$ such that the index $\alpha (\Bbb D_{s}^{r})$\ admits a ground state solution if $s>s_{0}$, but $\alpha (\ Bbb D_{s}^{r})$ does not admit any ground state solution if $s<s_{0}$. There is an open question: is $s_{0}=r$? In this article, we establish an index comparison criterion, then use the criterion to assert that there exists a ground state solution of equation (UD) in a flat interior flask domain : the Esteban-Lions domain $\Bbb {S}_{0}^{r}$ by adding an arbitrary small width but sufficient long corridor. We also establish the asymptotic behavior, the symmetry, and the algorithms and visualization of each solution of equation (UD) in the interior flask domain $\ Bbb D_{s}^{r}$.
author2 Hwai-Chiaun Wang
author_facet Hwai-Chiaun Wang
Huei-Li Lin
林惠莉
author Huei-Li Lin
林惠莉
spellingShingle Huei-Li Lin
林惠莉
A Palais-Smale Approach to Lane-Emden Equations
author_sort Huei-Li Lin
title A Palais-Smale Approach to Lane-Emden Equations
title_short A Palais-Smale Approach to Lane-Emden Equations
title_full A Palais-Smale Approach to Lane-Emden Equations
title_fullStr A Palais-Smale Approach to Lane-Emden Equations
title_full_unstemmed A Palais-Smale Approach to Lane-Emden Equations
title_sort palais-smale approach to lane-emden equations
publishDate 1999
url http://ndltd.ncl.edu.tw/handle/84705845795015514792
work_keys_str_mv AT hueililin apalaissmaleapproachtolaneemdenequations
AT línhuìlì apalaissmaleapproachtolaneemdenequations
AT hueililin yòngbāláisīmàiěrfǎjiělánàiméidēngfāngchéng
AT línhuìlì yòngbāláisīmàiěrfǎjiělánàiméidēngfāngchéng
AT hueililin palaissmaleapproachtolaneemdenequations
AT línhuìlì palaissmaleapproachtolaneemdenequations
_version_ 1716847700537769984