A Palais-Smale Approach to Lane-Emden Equations
碩士 === 國立清華大學 === 數學系 === 87 === Chen-Lee-Wang [5], Chen-Wang [6], and Lien-Tzeng-Wang [14] asserted the existence of a ground state solution of equation (UD) in interior flask domains $\Bbb D_{s}^{r}$ : there exists $s_{0}>0$ such that the index $\alpha (\Bbb D_{s}^{r})$\ admits a gr...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
1999
|
Online Access: | http://ndltd.ncl.edu.tw/handle/84705845795015514792 |
id |
ndltd-TW-087NTHU0479020 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-087NTHU04790202015-10-13T11:46:55Z http://ndltd.ncl.edu.tw/handle/84705845795015514792 A Palais-Smale Approach to Lane-Emden Equations 用巴萊斯麥爾法解蘭愛梅登方程 Huei-Li Lin 林惠莉 碩士 國立清華大學 數學系 87 Chen-Lee-Wang [5], Chen-Wang [6], and Lien-Tzeng-Wang [14] asserted the existence of a ground state solution of equation (UD) in interior flask domains $\Bbb D_{s}^{r}$ : there exists $s_{0}>0$ such that the index $\alpha (\Bbb D_{s}^{r})$\ admits a ground state solution if $s>s_{0}$, but $\alpha (\ Bbb D_{s}^{r})$ does not admit any ground state solution if $s<s_{0}$. There is an open question: is $s_{0}=r$? In this article, we establish an index comparison criterion, then use the criterion to assert that there exists a ground state solution of equation (UD) in a flat interior flask domain : the Esteban-Lions domain $\Bbb {S}_{0}^{r}$ by adding an arbitrary small width but sufficient long corridor. We also establish the asymptotic behavior, the symmetry, and the algorithms and visualization of each solution of equation (UD) in the interior flask domain $\ Bbb D_{s}^{r}$. Hwai-Chiaun Wang 王懷權 1999 學位論文 ; thesis 19 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立清華大學 === 數學系 === 87 === Chen-Lee-Wang [5], Chen-Wang [6], and Lien-Tzeng-Wang [14] asserted the existence of a ground state solution of equation (UD) in interior flask domains $\Bbb D_{s}^{r}$ : there exists $s_{0}>0$ such that the index $\alpha (\Bbb D_{s}^{r})$\ admits a ground state solution if $s>s_{0}$, but $\alpha (\ Bbb D_{s}^{r})$ does not admit any ground state solution if $s<s_{0}$. There is an open question: is $s_{0}=r$? In this article, we establish an index comparison criterion, then use the criterion to assert that there exists a ground state solution of equation (UD) in a flat interior flask domain : the Esteban-Lions domain $\Bbb {S}_{0}^{r}$ by adding an arbitrary small width but sufficient long corridor. We also establish the asymptotic behavior, the symmetry, and the algorithms and visualization of each solution of equation (UD) in the interior flask domain $\ Bbb D_{s}^{r}$.
|
author2 |
Hwai-Chiaun Wang |
author_facet |
Hwai-Chiaun Wang Huei-Li Lin 林惠莉 |
author |
Huei-Li Lin 林惠莉 |
spellingShingle |
Huei-Li Lin 林惠莉 A Palais-Smale Approach to Lane-Emden Equations |
author_sort |
Huei-Li Lin |
title |
A Palais-Smale Approach to Lane-Emden Equations |
title_short |
A Palais-Smale Approach to Lane-Emden Equations |
title_full |
A Palais-Smale Approach to Lane-Emden Equations |
title_fullStr |
A Palais-Smale Approach to Lane-Emden Equations |
title_full_unstemmed |
A Palais-Smale Approach to Lane-Emden Equations |
title_sort |
palais-smale approach to lane-emden equations |
publishDate |
1999 |
url |
http://ndltd.ncl.edu.tw/handle/84705845795015514792 |
work_keys_str_mv |
AT hueililin apalaissmaleapproachtolaneemdenequations AT línhuìlì apalaissmaleapproachtolaneemdenequations AT hueililin yòngbāláisīmàiěrfǎjiělánàiméidēngfāngchéng AT línhuìlì yòngbāláisīmàiěrfǎjiělánàiméidēngfāngchéng AT hueililin palaissmaleapproachtolaneemdenequations AT línhuìlì palaissmaleapproachtolaneemdenequations |
_version_ |
1716847700537769984 |