On Kummer theory of division points over Drinfeld modules

博士 === 國立清華大學 === 數學系 === 87 === Let k be the rational function field, and A be the polynomial ring. Let ψ be a Drinfeld module over a finite extension L of k which is viewed as an A-field of generic characteristic. Via ψ, L becomes an A-module. We denote this module by ψ(L). Denote Λ(M,ψ) to be the...

Full description

Bibliographic Details
Main Authors: Anly Li, 李安莉
Other Authors: Wen-Chen Chi
Format: Others
Language:zh-TW
Published: 1999
Online Access:http://ndltd.ncl.edu.tw/handle/66939229486118463838
id ndltd-TW-087NTHU0479002
record_format oai_dc
spelling ndltd-TW-087NTHU04790022015-10-13T11:46:55Z http://ndltd.ncl.edu.tw/handle/66939229486118463838 On Kummer theory of division points over Drinfeld modules 定義在Drinfeld模上可除點的Kummer理論 Anly Li 李安莉 博士 國立清華大學 數學系 87 Let k be the rational function field, and A be the polynomial ring. Let ψ be a Drinfeld module over a finite extension L of k which is viewed as an A-field of generic characteristic. Via ψ, L becomes an A-module. We denote this module by ψ(L). Denote Λ(M,ψ) to be the module of M-torsion points of ψ. For finitely generated A-submodule Γof ψ(L), set H(Γ,M) to be the Galois group Gal(L(Λ(M,ψ),1/MΓ)/L(Λ(M,ψ) )). In this thesis, we establish the Kummer theory of division points over the Carlitz module, Drinfeld modules of rank one, singular Drinfeld modules of rank 2, and more generally, singular Drinfeld modules of any rank. Under some mild conditions, it can be shown that for almost all primes p in A, the Galois group H(Γ,p) is as large as possible. In particular, if Γ is free of rank r, then H(Γ,p) is isomorphic to the direct product of the r copies of Λ(p,ψ). Wen-Chen Chi 紀文鎮 1999 學位論文 ; thesis 77 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 博士 === 國立清華大學 === 數學系 === 87 === Let k be the rational function field, and A be the polynomial ring. Let ψ be a Drinfeld module over a finite extension L of k which is viewed as an A-field of generic characteristic. Via ψ, L becomes an A-module. We denote this module by ψ(L). Denote Λ(M,ψ) to be the module of M-torsion points of ψ. For finitely generated A-submodule Γof ψ(L), set H(Γ,M) to be the Galois group Gal(L(Λ(M,ψ),1/MΓ)/L(Λ(M,ψ) )). In this thesis, we establish the Kummer theory of division points over the Carlitz module, Drinfeld modules of rank one, singular Drinfeld modules of rank 2, and more generally, singular Drinfeld modules of any rank. Under some mild conditions, it can be shown that for almost all primes p in A, the Galois group H(Γ,p) is as large as possible. In particular, if Γ is free of rank r, then H(Γ,p) is isomorphic to the direct product of the r copies of Λ(p,ψ).
author2 Wen-Chen Chi
author_facet Wen-Chen Chi
Anly Li
李安莉
author Anly Li
李安莉
spellingShingle Anly Li
李安莉
On Kummer theory of division points over Drinfeld modules
author_sort Anly Li
title On Kummer theory of division points over Drinfeld modules
title_short On Kummer theory of division points over Drinfeld modules
title_full On Kummer theory of division points over Drinfeld modules
title_fullStr On Kummer theory of division points over Drinfeld modules
title_full_unstemmed On Kummer theory of division points over Drinfeld modules
title_sort on kummer theory of division points over drinfeld modules
publishDate 1999
url http://ndltd.ncl.edu.tw/handle/66939229486118463838
work_keys_str_mv AT anlyli onkummertheoryofdivisionpointsoverdrinfeldmodules
AT lǐānlì onkummertheoryofdivisionpointsoverdrinfeldmodules
AT anlyli dìngyìzàidrinfeldmóshàngkěchúdiǎndekummerlǐlùn
AT lǐānlì dìngyìzàidrinfeldmóshàngkěchúdiǎndekummerlǐlùn
_version_ 1716847693163134976