On Kummer theory of division points over Drinfeld modules
博士 === 國立清華大學 === 數學系 === 87 === Let k be the rational function field, and A be the polynomial ring. Let ψ be a Drinfeld module over a finite extension L of k which is viewed as an A-field of generic characteristic. Via ψ, L becomes an A-module. We denote this module by ψ(L). Denote Λ(M,ψ) to be the...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
1999
|
Online Access: | http://ndltd.ncl.edu.tw/handle/66939229486118463838 |
id |
ndltd-TW-087NTHU0479002 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-087NTHU04790022015-10-13T11:46:55Z http://ndltd.ncl.edu.tw/handle/66939229486118463838 On Kummer theory of division points over Drinfeld modules 定義在Drinfeld模上可除點的Kummer理論 Anly Li 李安莉 博士 國立清華大學 數學系 87 Let k be the rational function field, and A be the polynomial ring. Let ψ be a Drinfeld module over a finite extension L of k which is viewed as an A-field of generic characteristic. Via ψ, L becomes an A-module. We denote this module by ψ(L). Denote Λ(M,ψ) to be the module of M-torsion points of ψ. For finitely generated A-submodule Γof ψ(L), set H(Γ,M) to be the Galois group Gal(L(Λ(M,ψ),1/MΓ)/L(Λ(M,ψ) )). In this thesis, we establish the Kummer theory of division points over the Carlitz module, Drinfeld modules of rank one, singular Drinfeld modules of rank 2, and more generally, singular Drinfeld modules of any rank. Under some mild conditions, it can be shown that for almost all primes p in A, the Galois group H(Γ,p) is as large as possible. In particular, if Γ is free of rank r, then H(Γ,p) is isomorphic to the direct product of the r copies of Λ(p,ψ). Wen-Chen Chi 紀文鎮 1999 學位論文 ; thesis 77 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
博士 === 國立清華大學 === 數學系 === 87 === Let k be the rational function field, and A be the polynomial ring. Let ψ be a Drinfeld module over a finite extension L of k which is viewed as an A-field of generic characteristic. Via ψ, L becomes an A-module. We denote this module by ψ(L). Denote Λ(M,ψ) to be the module of M-torsion points of ψ. For finitely generated A-submodule Γof ψ(L), set H(Γ,M) to be the Galois group Gal(L(Λ(M,ψ),1/MΓ)/L(Λ(M,ψ) )).
In this thesis, we establish the Kummer theory of division points over the Carlitz module, Drinfeld modules of rank one, singular Drinfeld modules of rank 2, and more generally, singular Drinfeld modules of any rank. Under some mild conditions, it can be shown that for almost all primes p in A, the Galois group H(Γ,p) is as large as possible. In particular, if Γ is free of rank r, then H(Γ,p) is isomorphic to the direct product of the r copies of Λ(p,ψ).
|
author2 |
Wen-Chen Chi |
author_facet |
Wen-Chen Chi Anly Li 李安莉 |
author |
Anly Li 李安莉 |
spellingShingle |
Anly Li 李安莉 On Kummer theory of division points over Drinfeld modules |
author_sort |
Anly Li |
title |
On Kummer theory of division points over Drinfeld modules |
title_short |
On Kummer theory of division points over Drinfeld modules |
title_full |
On Kummer theory of division points over Drinfeld modules |
title_fullStr |
On Kummer theory of division points over Drinfeld modules |
title_full_unstemmed |
On Kummer theory of division points over Drinfeld modules |
title_sort |
on kummer theory of division points over drinfeld modules |
publishDate |
1999 |
url |
http://ndltd.ncl.edu.tw/handle/66939229486118463838 |
work_keys_str_mv |
AT anlyli onkummertheoryofdivisionpointsoverdrinfeldmodules AT lǐānlì onkummertheoryofdivisionpointsoverdrinfeldmodules AT anlyli dìngyìzàidrinfeldmóshàngkěchúdiǎndekummerlǐlùn AT lǐānlì dìngyìzàidrinfeldmóshàngkěchúdiǎndekummerlǐlùn |
_version_ |
1716847693163134976 |