THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION

碩士 === 國立高雄師範大學 === 數學系 === 87 === This paper is concerned with the assocoiated linear IVP $$ u_t+(vu)_x-u_{xxt}= f(x,t),$$ $$ u(x,0)= u_0(x).$$ for $x\in {\bf R}$, $t>0,$ where $v=v(x,t)$ is a given function. The well-posedness of the IVP in the space...

Full description

Bibliographic Details
Main Authors: Chia-Jung Kuo, 郭佳蓉
Other Authors: Tai-Cheng Tso
Format: Others
Language:en_US
Published: 1999
Online Access:http://ndltd.ncl.edu.tw/handle/94299389333390489771
id ndltd-TW-087NKNU0479009
record_format oai_dc
spelling ndltd-TW-087NKNU04790092016-07-11T04:14:10Z http://ndltd.ncl.edu.tw/handle/94299389333390489771 THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION 受驅策BBM方程初值問題之研究 Chia-Jung Kuo 郭佳蓉 碩士 國立高雄師範大學 數學系 87 This paper is concerned with the assocoiated linear IVP $$ u_t+(vu)_x-u_{xxt}= f(x,t),$$ $$ u(x,0)= u_0(x).$$ for $x\in {\bf R}$, $t>0,$ where $v=v(x,t)$ is a given function. The well-posedness of the IVP in the space ${\cal H}_T\cap{\cal C}_T^{2,1}$ (for a given finite $T>0$) is established and estimates of the solution in terms of $u_0$ and $f$ are provided. We use the method of linear estimates to establish the analyticity and well-posedness of the forced Benjamin-Bona-Mahony (BBM for short) equation $$ u_t+uu_x-u_{xxt} = f(x,t),$$ $$ u(x,0)=u_0(x). $$ for $x\in{\bf R},\;t>0$ under the conditions on the initial value $u_0(x) \in H^1({\bf R}) \cap {\cal C}_b^2({\bf R})$ and the forcing function $f(x,t) \in {\cal C}_T \cap {\cal L}_T$ are provided. Tai-Cheng Tso 左太政 1999 學位論文 ; thesis 33 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立高雄師範大學 === 數學系 === 87 === This paper is concerned with the assocoiated linear IVP $$ u_t+(vu)_x-u_{xxt}= f(x,t),$$ $$ u(x,0)= u_0(x).$$ for $x\in {\bf R}$, $t>0,$ where $v=v(x,t)$ is a given function. The well-posedness of the IVP in the space ${\cal H}_T\cap{\cal C}_T^{2,1}$ (for a given finite $T>0$) is established and estimates of the solution in terms of $u_0$ and $f$ are provided. We use the method of linear estimates to establish the analyticity and well-posedness of the forced Benjamin-Bona-Mahony (BBM for short) equation $$ u_t+uu_x-u_{xxt} = f(x,t),$$ $$ u(x,0)=u_0(x). $$ for $x\in{\bf R},\;t>0$ under the conditions on the initial value $u_0(x) \in H^1({\bf R}) \cap {\cal C}_b^2({\bf R})$ and the forcing function $f(x,t) \in {\cal C}_T \cap {\cal L}_T$ are provided.
author2 Tai-Cheng Tso
author_facet Tai-Cheng Tso
Chia-Jung Kuo
郭佳蓉
author Chia-Jung Kuo
郭佳蓉
spellingShingle Chia-Jung Kuo
郭佳蓉
THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION
author_sort Chia-Jung Kuo
title THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION
title_short THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION
title_full THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION
title_fullStr THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION
title_full_unstemmed THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION
title_sort initial-value problem for the forced bbm equation
publishDate 1999
url http://ndltd.ncl.edu.tw/handle/94299389333390489771
work_keys_str_mv AT chiajungkuo theinitialvalueproblemfortheforcedbbmequation
AT guōjiāróng theinitialvalueproblemfortheforcedbbmequation
AT chiajungkuo shòuqūcèbbmfāngchéngchūzhíwèntízhīyánjiū
AT guōjiāróng shòuqūcèbbmfāngchéngchūzhíwèntízhīyánjiū
AT chiajungkuo initialvalueproblemfortheforcedbbmequation
AT guōjiāróng initialvalueproblemfortheforcedbbmequation
_version_ 1718344701782786048