THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION
碩士 === 國立高雄師範大學 === 數學系 === 87 === This paper is concerned with the assocoiated linear IVP $$ u_t+(vu)_x-u_{xxt}= f(x,t),$$ $$ u(x,0)= u_0(x).$$ for $x\in {\bf R}$, $t>0,$ where $v=v(x,t)$ is a given function. The well-posedness of the IVP in the space...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
1999
|
Online Access: | http://ndltd.ncl.edu.tw/handle/94299389333390489771 |
id |
ndltd-TW-087NKNU0479009 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-087NKNU04790092016-07-11T04:14:10Z http://ndltd.ncl.edu.tw/handle/94299389333390489771 THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION 受驅策BBM方程初值問題之研究 Chia-Jung Kuo 郭佳蓉 碩士 國立高雄師範大學 數學系 87 This paper is concerned with the assocoiated linear IVP $$ u_t+(vu)_x-u_{xxt}= f(x,t),$$ $$ u(x,0)= u_0(x).$$ for $x\in {\bf R}$, $t>0,$ where $v=v(x,t)$ is a given function. The well-posedness of the IVP in the space ${\cal H}_T\cap{\cal C}_T^{2,1}$ (for a given finite $T>0$) is established and estimates of the solution in terms of $u_0$ and $f$ are provided. We use the method of linear estimates to establish the analyticity and well-posedness of the forced Benjamin-Bona-Mahony (BBM for short) equation $$ u_t+uu_x-u_{xxt} = f(x,t),$$ $$ u(x,0)=u_0(x). $$ for $x\in{\bf R},\;t>0$ under the conditions on the initial value $u_0(x) \in H^1({\bf R}) \cap {\cal C}_b^2({\bf R})$ and the forcing function $f(x,t) \in {\cal C}_T \cap {\cal L}_T$ are provided. Tai-Cheng Tso 左太政 1999 學位論文 ; thesis 33 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立高雄師範大學 === 數學系 === 87 === This paper is concerned with the assocoiated linear IVP
$$ u_t+(vu)_x-u_{xxt}= f(x,t),$$
$$ u(x,0)= u_0(x).$$
for $x\in {\bf R}$, $t>0,$ where $v=v(x,t)$ is a given function. The well-posedness of the IVP in the space ${\cal H}_T\cap{\cal C}_T^{2,1}$ (for a given finite $T>0$) is established and estimates of the solution in terms of $u_0$ and $f$ are provided. We use the method of linear estimates to establish the analyticity and well-posedness of the forced Benjamin-Bona-Mahony (BBM for short) equation
$$ u_t+uu_x-u_{xxt} = f(x,t),$$
$$ u(x,0)=u_0(x). $$
for $x\in{\bf R},\;t>0$ under the conditions on the initial value $u_0(x) \in H^1({\bf R}) \cap {\cal C}_b^2({\bf R})$ and the forcing function $f(x,t) \in {\cal C}_T \cap {\cal L}_T$ are provided.
|
author2 |
Tai-Cheng Tso |
author_facet |
Tai-Cheng Tso Chia-Jung Kuo 郭佳蓉 |
author |
Chia-Jung Kuo 郭佳蓉 |
spellingShingle |
Chia-Jung Kuo 郭佳蓉 THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION |
author_sort |
Chia-Jung Kuo |
title |
THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION |
title_short |
THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION |
title_full |
THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION |
title_fullStr |
THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION |
title_full_unstemmed |
THE INITIAL-VALUE PROBLEM FOR THE FORCED BBM EQUATION |
title_sort |
initial-value problem for the forced bbm equation |
publishDate |
1999 |
url |
http://ndltd.ncl.edu.tw/handle/94299389333390489771 |
work_keys_str_mv |
AT chiajungkuo theinitialvalueproblemfortheforcedbbmequation AT guōjiāróng theinitialvalueproblemfortheforcedbbmequation AT chiajungkuo shòuqūcèbbmfāngchéngchūzhíwèntízhīyánjiū AT guōjiāróng shòuqūcèbbmfāngchéngchūzhíwèntízhīyánjiū AT chiajungkuo initialvalueproblemfortheforcedbbmequation AT guōjiāróng initialvalueproblemfortheforcedbbmequation |
_version_ |
1718344701782786048 |