Local Linear Principle Component Regression Function Estimation.
碩士 === 國立東華大學 === 應用數學系 === 87 === In the case of the random design nonparametric regression, the local linear estimator(LLE)is the most popular kernel regression function estimator. However, there is a drawback to the LLE. That is, in some cases , the a...
Main Authors: | Ming-Horng Lin, 林銘宏 |
---|---|
Other Authors: | Chu, C.K. |
Format: | Others |
Language: | zh-TW |
Published: |
1999
|
Online Access: | http://ndltd.ncl.edu.tw/handle/05669606629232786924 |
Similar Items
-
CHANGE-POINTS ESTIMATION BY LOCAL LINEAR REGRESSION SMOOTHERS
by: Ye, Bo-Hong, et al. -
The Study of Kernel Regression Function Polygons and Local Linear Ridge Regression Estimators
by: Deng Wen -Shuenn, et al.
Published: (2002) -
Local Linear Regression Estimator on the Boundary Correction in Nonparametric Regression Estimation
by: Langat Reuben Cheruiyot
Published: (2020-10-01) -
Robust estimation of the number of components for mixtures of linear regression
by: Meng, Li
Published: (2014) -
Asymptotic Properties of the Local Ridge Regression Estimator
by: Lin, Hung-Chung, et al.
Published: (1999)