Local Linear Principle Component Regression Function Estimation.

碩士 === 國立東華大學 === 應用數學系 === 87 === In the case of the random design nonparametric regression, the local linear estimator(LLE)is the most popular kernel regression function estimator. However, there is a drawback to the LLE. That is, in some cases , the a...

Full description

Bibliographic Details
Main Authors: Ming-Horng Lin, 林銘宏
Other Authors: Chu, C.K.
Format: Others
Language:zh-TW
Published: 1999
Online Access:http://ndltd.ncl.edu.tw/handle/05669606629232786924
id ndltd-TW-087NDHU0507003
record_format oai_dc
spelling ndltd-TW-087NDHU05070032016-07-11T04:14:09Z http://ndltd.ncl.edu.tw/handle/05669606629232786924 Local Linear Principle Component Regression Function Estimation. 區域線性主成分迴歸函數估計方法 Ming-Horng Lin 林銘宏 碩士 國立東華大學 應用數學系 87 In the case of the random design nonparametric regression, the local linear estimator(LLE)is the most popular kernel regression function estimator. However, there is a drawback to the LLE. That is, in some cases , the associated inverse matrix to the LLE may not exist. For exam- ple, there is only one design point falling in the compact window around the point at which the regression function value is estimated. To correct for the drawback to the LLE, we apply the idea of principle component analysis to the LLE, and propose the local linear principle component re-gression function estimator (LLPCRFE). Simulation studies demonstrate that the LLPCRFE has better performance than the ordinary LLE. Chu, C.K. 朱至剛 1999 學位論文 ; thesis 13 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立東華大學 === 應用數學系 === 87 === In the case of the random design nonparametric regression, the local linear estimator(LLE)is the most popular kernel regression function estimator. However, there is a drawback to the LLE. That is, in some cases , the associated inverse matrix to the LLE may not exist. For exam- ple, there is only one design point falling in the compact window around the point at which the regression function value is estimated. To correct for the drawback to the LLE, we apply the idea of principle component analysis to the LLE, and propose the local linear principle component re-gression function estimator (LLPCRFE). Simulation studies demonstrate that the LLPCRFE has better performance than the ordinary LLE.
author2 Chu, C.K.
author_facet Chu, C.K.
Ming-Horng Lin
林銘宏
author Ming-Horng Lin
林銘宏
spellingShingle Ming-Horng Lin
林銘宏
Local Linear Principle Component Regression Function Estimation.
author_sort Ming-Horng Lin
title Local Linear Principle Component Regression Function Estimation.
title_short Local Linear Principle Component Regression Function Estimation.
title_full Local Linear Principle Component Regression Function Estimation.
title_fullStr Local Linear Principle Component Regression Function Estimation.
title_full_unstemmed Local Linear Principle Component Regression Function Estimation.
title_sort local linear principle component regression function estimation.
publishDate 1999
url http://ndltd.ncl.edu.tw/handle/05669606629232786924
work_keys_str_mv AT minghornglin locallinearprinciplecomponentregressionfunctionestimation
AT línmínghóng locallinearprinciplecomponentregressionfunctionestimation
AT minghornglin qūyùxiànxìngzhǔchéngfēnhuíguīhánshùgūjìfāngfǎ
AT línmínghóng qūyùxiànxìngzhǔchéngfēnhuíguīhánshùgūjìfāngfǎ
_version_ 1718344475026128896