Local Linear Principle Component Regression Function Estimation.
碩士 === 國立東華大學 === 應用數學系 === 87 === In the case of the random design nonparametric regression, the local linear estimator(LLE)is the most popular kernel regression function estimator. However, there is a drawback to the LLE. That is, in some cases , the a...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
1999
|
Online Access: | http://ndltd.ncl.edu.tw/handle/05669606629232786924 |
id |
ndltd-TW-087NDHU0507003 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-087NDHU05070032016-07-11T04:14:09Z http://ndltd.ncl.edu.tw/handle/05669606629232786924 Local Linear Principle Component Regression Function Estimation. 區域線性主成分迴歸函數估計方法 Ming-Horng Lin 林銘宏 碩士 國立東華大學 應用數學系 87 In the case of the random design nonparametric regression, the local linear estimator(LLE)is the most popular kernel regression function estimator. However, there is a drawback to the LLE. That is, in some cases , the associated inverse matrix to the LLE may not exist. For exam- ple, there is only one design point falling in the compact window around the point at which the regression function value is estimated. To correct for the drawback to the LLE, we apply the idea of principle component analysis to the LLE, and propose the local linear principle component re-gression function estimator (LLPCRFE). Simulation studies demonstrate that the LLPCRFE has better performance than the ordinary LLE. Chu, C.K. 朱至剛 1999 學位論文 ; thesis 13 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立東華大學 === 應用數學系 === 87 === In the case of the random design nonparametric regression, the local linear
estimator(LLE)is the most popular kernel regression function estimator.
However, there is a drawback to the LLE. That is, in some cases , the
associated inverse matrix to the LLE may not exist. For exam- ple, there is
only one design point falling in the compact window around the point at
which the regression function value is estimated. To correct for the drawback
to the LLE, we apply the idea of principle component analysis to the LLE,
and propose the local linear principle component re-gression function
estimator (LLPCRFE). Simulation studies demonstrate that the LLPCRFE has
better performance than the ordinary LLE.
|
author2 |
Chu, C.K. |
author_facet |
Chu, C.K. Ming-Horng Lin 林銘宏 |
author |
Ming-Horng Lin 林銘宏 |
spellingShingle |
Ming-Horng Lin 林銘宏 Local Linear Principle Component Regression Function Estimation. |
author_sort |
Ming-Horng Lin |
title |
Local Linear Principle Component Regression Function Estimation. |
title_short |
Local Linear Principle Component Regression Function Estimation. |
title_full |
Local Linear Principle Component Regression Function Estimation. |
title_fullStr |
Local Linear Principle Component Regression Function Estimation. |
title_full_unstemmed |
Local Linear Principle Component Regression Function Estimation. |
title_sort |
local linear principle component regression function estimation. |
publishDate |
1999 |
url |
http://ndltd.ncl.edu.tw/handle/05669606629232786924 |
work_keys_str_mv |
AT minghornglin locallinearprinciplecomponentregressionfunctionestimation AT línmínghóng locallinearprinciplecomponentregressionfunctionestimation AT minghornglin qūyùxiànxìngzhǔchéngfēnhuíguīhánshùgūjìfāngfǎ AT línmínghóng qūyùxiànxìngzhǔchéngfēnhuíguīhánshùgūjìfāngfǎ |
_version_ |
1718344475026128896 |