Summary: | 碩士 === 國立交通大學 === 土木工程系 === 87 === The analysis of slope stability has long been an intriguing issue for civil engineers. In an attempt to obtain a unique solution for an indeterminate slope stability problem, many methods have been proposed. These techniques include the method of slices, and more recently as the computer capability improves, numerical simulations such as the finite element, boundary element, and discontinuous deformation methods. The goal of these stability analyses is to search for a potential failure surface within a slope that has the minimum safety factor and the value of this safety factor itself. Natural materials such as soils and rocks are inherently discontinuous, the above techniques have limitations in simulating these discontinuities and the phenomenon of deformation and sliding of a mass that contains discontinuities.
A technique of numerically simulating the breakage of a continuous material and transformation into a set of discontinuous blocks has been developed in this thesis. Using the Mohr-Coulomb failure criteria and the numerical manifold method developed by Genhua Shi, the development and propagation of fractures within a continuous material can be simulated. The thesis describes details of this numerical technique and its applications in slope stability analyses.
|