Using Stereo Vision with Active Laser for the Feature Recognition of Mold Surface

碩士 === 國立成功大學 === 機械工程學系 === 86 === This study uses image processing technique with active laser beam forgeometrical recognition of dies and molds. The mold's images weregrabbed from two CCD cameras. The gradient filter was employed wi...

Full description

Bibliographic Details
Main Authors: Wei, Hsu-chiang, 魏緒強
Other Authors: Tsai Ming-june
Format: Others
Language:zh-TW
Published: 1998
Online Access:http://ndltd.ncl.edu.tw/handle/9hxwxr
Description
Summary:碩士 === 國立成功大學 === 機械工程學系 === 86 === This study uses image processing technique with active laser beam forgeometrical recognition of dies and molds. The mold's images weregrabbed from two CCD cameras. The gradient filter was employed with a proper threshold value to get the binary images. We get three images that obtained by different lighting positions. All three images areoverlapped together to get the boundary information. We using mophology method to fill the empty hole and thin the boundary to get the edges ofeach surface on the mold. Then we using Mark-area method to divide each surface and find out the centered and principal axis as the project direction of laser beam. Finally we calculate the depth data of each surface on the mold with active laser beam then judge the feature of the surface by its depth data and the variation of the slope. Because the shapes of the mold surface are very complex, we try to recognize plane and revolving surface such as cone surface,cylindrical surface, spherical surface, And each revolving axis of revolving surface would be vertical or parallel to the planar parting surface. To reduce the interference result from the variation of depth data points, we calculate the regression line every 10 points. We try to recognized the feature of the mold surface by its depth data and the variation of the depth. For plane, spherical and cone surface, there are some special features with it. For example, the variation of the depth and slope in principle axes'direction would be zero for a plane. Finally we'll use a test mold to prove the theory.