A note on the logarithmic mean
碩士 === 淡江大學 === 數學學系 === 85 === For unequal positive x and y, the arithmetic mean A(x,y), the identric mean I(x,y), the logarithmic mean L(x,y), the geometric mean G(x,y), and the harmonic mean H(x,y) for x and y are defined by A=A(...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
1997
|
Online Access: | http://ndltd.ncl.edu.tw/handle/53151921314114529654 |
id |
ndltd-TW-085TKU00479015 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-085TKU004790152016-07-01T04:15:57Z http://ndltd.ncl.edu.tw/handle/53151921314114529654 A note on the logarithmic mean 關於對數平均數的研究 Xu, Hong-Quan 徐宏全 碩士 淡江大學 數學學系 85 For unequal positive x and y, the arithmetic mean A(x,y), the identric mean I(x,y), the logarithmic mean L(x,y), the geometric mean G(x,y), and the harmonic mean H(x,y) for x and y are defined by A=A(x,y)=(x+y)/2, I=I(x,y)=(1/e)(x^x/y^y) ^[1/(x-y)] L=L(x,y)=(x-y)/(lnx-lny), G=G(x,y)=(xy)^(1/2) H=H( x,y)=(2xy)/(x+y) respectively. In 1972, B.C.Carlson proved that G<L<(2G+A)/3<A. In 1975, K.B.Stolarsky proved that G<L<I<A. In 1990, J. Sandor proved that (A+L)/2<I. In 1991, J. Sandor proved that (A+L)/2<(2A+G)/3<I. Consequently, we have y<H<G<L<(2G+A)/3<(A+L)/2<(2A+G)/3<I<A<x if x>y. In this article, we present an elementary proof for the inequalities. The idea is that, we consider the strictly increasing function F(s)=s(x-y)+y, s is between 0 and 1, and let F(s1)=H, F(s2)= G, F(s3)=L, F(s4)=(2G+A)/3, F(s5)=(A+L)/2, F(s6)=(2A+G)/3. F( s7)=I, F(s8)=A. The main results of this article is to show that 0<s1<s2<s3< s4<s5<s6<s7<s8<1,then F(0)<F(s1)<F(s2)<F(s3)<F(s4)<F(s5)<F( s6)<F(s7)<F(s8)<1, which is equivalent to the inequalities. Gou-Sheng Yang 楊國勝 1997 學位論文 ; thesis 18 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 淡江大學 === 數學學系 === 85 === For unequal positive x and y, the arithmetic mean A(x,y), the
identric mean I(x,y), the logarithmic mean L(x,y), the
geometric mean G(x,y), and the harmonic mean H(x,y) for x and
y are defined by A=A(x,y)=(x+y)/2, I=I(x,y)=(1/e)(x^x/y^y)
^[1/(x-y)] L=L(x,y)=(x-y)/(lnx-lny), G=G(x,y)=(xy)^(1/2) H=H(
x,y)=(2xy)/(x+y) respectively. In 1972, B.C.Carlson
proved that G<L<(2G+A)/3<A. In 1975, K.B.Stolarsky proved that
G<L<I<A. In 1990, J. Sandor proved that (A+L)/2<I. In 1991, J.
Sandor proved that (A+L)/2<(2A+G)/3<I. Consequently, we have
y<H<G<L<(2G+A)/3<(A+L)/2<(2A+G)/3<I<A<x if x>y. In this
article, we present an elementary proof for the inequalities.
The idea is that, we consider the strictly increasing function
F(s)=s(x-y)+y, s is between 0 and 1, and let F(s1)=H, F(s2)=
G, F(s3)=L, F(s4)=(2G+A)/3, F(s5)=(A+L)/2, F(s6)=(2A+G)/3. F(
s7)=I, F(s8)=A.
The main results of this article is to show that 0<s1<s2<s3<
s4<s5<s6<s7<s8<1,then F(0)<F(s1)<F(s2)<F(s3)<F(s4)<F(s5)<F(
s6)<F(s7)<F(s8)<1, which is equivalent to the
inequalities.
|
author2 |
Gou-Sheng Yang |
author_facet |
Gou-Sheng Yang Xu, Hong-Quan 徐宏全 |
author |
Xu, Hong-Quan 徐宏全 |
spellingShingle |
Xu, Hong-Quan 徐宏全 A note on the logarithmic mean |
author_sort |
Xu, Hong-Quan |
title |
A note on the logarithmic mean |
title_short |
A note on the logarithmic mean |
title_full |
A note on the logarithmic mean |
title_fullStr |
A note on the logarithmic mean |
title_full_unstemmed |
A note on the logarithmic mean |
title_sort |
note on the logarithmic mean |
publishDate |
1997 |
url |
http://ndltd.ncl.edu.tw/handle/53151921314114529654 |
work_keys_str_mv |
AT xuhongquan anoteonthelogarithmicmean AT xúhóngquán anoteonthelogarithmicmean AT xuhongquan guānyúduìshùpíngjūnshùdeyánjiū AT xúhóngquán guānyúduìshùpíngjūnshùdeyánjiū AT xuhongquan noteonthelogarithmicmean AT xúhóngquán noteonthelogarithmicmean |
_version_ |
1718330486645850112 |