Summary: | 碩士 === 國立臺灣大學 === 機械工程學系 === 85 === Every numerical method has some flaws, especially in
calculating the pressure of Navier-Stokes equation. For
some cases, most numerical methods cannot get reasonable
pressure field, even include the latest spectral method and
spectral element method. We use staggered mesh in spectral
method and spectral element method to solve 2-D
incompressible Navier-Stokes equation in order to get
reasonable pressure field. Staggered mesh is that we put the
velocity and the pressure on different collocation point in
space discreti- zation of Navier-Stokes equation, then the
velocity mesh and the pressure meshare staggered mutually. Non-
staggered mesh is that the velocity mesh and the pressure mesh
are on the same collocation point. In this thesis, we first
briefly state and prove the basic theory, and then identify the
correctness of our staggered mesh code, and compare the
results of the non-staggered mesh and the staggered mesh.
|