OnHilbert-KunzFunctionofBinomialHypersurfaces
碩士 === 國立臺灣師範大學 === 數學研究所 === 85 === Let (R,m) be a complete local noetherian Z/(p)-algebra, and m[n] the Pn-th Frobenius power of m, i.e. the ideal generated by the Pn -th powers of the elements of m . Let en(R) be the length of R/m[n]. The function n|→en (R) is called the Hilbert-Kunz fu...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Online Access: | http://ndltd.ncl.edu.tw/handle/07484736150486094939 |
id |
ndltd-TW-085NTNU3479001 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-085NTNU34790012015-10-13T18:05:34Z http://ndltd.ncl.edu.tw/handle/07484736150486094939 OnHilbert-KunzFunctionofBinomialHypersurfaces 謝信鴻 碩士 國立臺灣師範大學 數學研究所 85 Let (R,m) be a complete local noetherian Z/(p)-algebra, and m[n] the Pn-th Frobenius power of m, i.e. the ideal generated by the Pn -th powers of the elements of m . Let en(R) be the length of R/m[n]. The function n|→en (R) is called the Hilbert-Kunz function of R. Let F be a field of characteristic p > 0 and S=F〔|S1,...,Xr,Y1,...,Ys,Z1,...,Zt|〕. In this article, by making use of Froebner basis, we determine the Hilbert-Kunz function of binomial hypersurfaces of the form: f:=X1(a1...Xr(ar))Y1(b1)...Ys(bs)+Y1(c1)...Ys(cs)Z1(d1))...Zt(dr) with bk≧ck for each k. LetR=S/<f>,. In Section 2, we discuss the case r≧1 and the discussion for r=0 is in section 3. In Proposition 2.7 and 3.7, we explicitly determine the Hilbert-Kunz function, and in Theorem 2.8 and 3.8, we show that for n>>0, where λ is a rational number and fk(n) is an eventually periodic function of n for each k. For the general binomial hypersufaces, it is more complicated to explicitly determine the Hibert-Kunz function. 洪有情 學位論文 ; thesis 30 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立臺灣師範大學 === 數學研究所 === 85 === Let (R,m) be a complete local noetherian Z/(p)-algebra, and m[n] the Pn-th Frobenius power of m, i.e. the ideal generated by the Pn -th powers of the elements of m . Let en(R) be the length of R/m[n]. The function n|→en (R) is called the Hilbert-Kunz function of R.
Let F be a field of characteristic p > 0 and S=F〔|S1,...,Xr,Y1,...,Ys,Z1,...,Zt|〕. In this article, by making use of Froebner basis, we determine the Hilbert-Kunz function of binomial hypersurfaces of the form:
f:=X1(a1...Xr(ar))Y1(b1)...Ys(bs)+Y1(c1)...Ys(cs)Z1(d1))...Zt(dr)
with bk≧ck for each k. LetR=S/<f>,. In Section 2, we discuss the case r≧1 and the discussion for r=0 is in section 3. In Proposition 2.7 and 3.7, we explicitly determine the Hilbert-Kunz function, and in Theorem 2.8 and 3.8, we show that for n>>0, where λ is a rational number and fk(n) is an eventually periodic function of n for each k.
For the general binomial hypersufaces, it is more complicated to explicitly determine the Hibert-Kunz function.
|
author2 |
洪有情 |
author_facet |
洪有情 謝信鴻 |
author |
謝信鴻 |
spellingShingle |
謝信鴻 OnHilbert-KunzFunctionofBinomialHypersurfaces |
author_sort |
謝信鴻 |
title |
OnHilbert-KunzFunctionofBinomialHypersurfaces |
title_short |
OnHilbert-KunzFunctionofBinomialHypersurfaces |
title_full |
OnHilbert-KunzFunctionofBinomialHypersurfaces |
title_fullStr |
OnHilbert-KunzFunctionofBinomialHypersurfaces |
title_full_unstemmed |
OnHilbert-KunzFunctionofBinomialHypersurfaces |
title_sort |
onhilbert-kunzfunctionofbinomialhypersurfaces |
url |
http://ndltd.ncl.edu.tw/handle/07484736150486094939 |
work_keys_str_mv |
AT xièxìnhóng onhilbertkunzfunctionofbinomialhypersurfaces |
_version_ |
1718028634152763392 |