OnHilbert-KunzFunctionofBinomialHypersurfaces

碩士 === 國立臺灣師範大學 === 數學研究所 === 85 === Let (R,m) be a complete local noetherian Z/(p)-algebra, and m[n] the Pn-th Frobenius power of m, i.e. the ideal generated by the Pn -th powers of the elements of m . Let en(R) be the length of R/m[n]. The function n|→en (R) is called the Hilbert-Kunz fu...

Full description

Bibliographic Details
Main Author: 謝信鴻
Other Authors: 洪有情
Format: Others
Language:en_US
Online Access:http://ndltd.ncl.edu.tw/handle/07484736150486094939
id ndltd-TW-085NTNU3479001
record_format oai_dc
spelling ndltd-TW-085NTNU34790012015-10-13T18:05:34Z http://ndltd.ncl.edu.tw/handle/07484736150486094939 OnHilbert-KunzFunctionofBinomialHypersurfaces 謝信鴻 碩士 國立臺灣師範大學 數學研究所 85 Let (R,m) be a complete local noetherian Z/(p)-algebra, and m[n] the Pn-th Frobenius power of m, i.e. the ideal generated by the Pn -th powers of the elements of m . Let en(R) be the length of R/m[n]. The function n|→en (R) is called the Hilbert-Kunz function of R. Let F be a field of characteristic p > 0 and S=F〔|S1,...,Xr,Y1,...,Ys,Z1,...,Zt|〕. In this article, by making use of Froebner basis, we determine the Hilbert-Kunz function of binomial hypersurfaces of the form: f:=X1(a1...Xr(ar))Y1(b1)...Ys(bs)+Y1(c1)...Ys(cs)Z1(d1))...Zt(dr) with bk≧ck for each k. LetR=S/<f>,. In Section 2, we discuss the case r≧1 and the discussion for r=0 is in section 3. In Proposition 2.7 and 3.7, we explicitly determine the Hilbert-Kunz function, and in Theorem 2.8 and 3.8, we show that for n>>0, where λ is a rational number and fk(n) is an eventually periodic function of n for each k. For the general binomial hypersufaces, it is more complicated to explicitly determine the Hibert-Kunz function. 洪有情 學位論文 ; thesis 30 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立臺灣師範大學 === 數學研究所 === 85 === Let (R,m) be a complete local noetherian Z/(p)-algebra, and m[n] the Pn-th Frobenius power of m, i.e. the ideal generated by the Pn -th powers of the elements of m . Let en(R) be the length of R/m[n]. The function n|→en (R) is called the Hilbert-Kunz function of R. Let F be a field of characteristic p > 0 and S=F〔|S1,...,Xr,Y1,...,Ys,Z1,...,Zt|〕. In this article, by making use of Froebner basis, we determine the Hilbert-Kunz function of binomial hypersurfaces of the form: f:=X1(a1...Xr(ar))Y1(b1)...Ys(bs)+Y1(c1)...Ys(cs)Z1(d1))...Zt(dr) with bk≧ck for each k. LetR=S/<f>,. In Section 2, we discuss the case r≧1 and the discussion for r=0 is in section 3. In Proposition 2.7 and 3.7, we explicitly determine the Hilbert-Kunz function, and in Theorem 2.8 and 3.8, we show that for n>>0, where λ is a rational number and fk(n) is an eventually periodic function of n for each k. For the general binomial hypersufaces, it is more complicated to explicitly determine the Hibert-Kunz function.
author2 洪有情
author_facet 洪有情
謝信鴻
author 謝信鴻
spellingShingle 謝信鴻
OnHilbert-KunzFunctionofBinomialHypersurfaces
author_sort 謝信鴻
title OnHilbert-KunzFunctionofBinomialHypersurfaces
title_short OnHilbert-KunzFunctionofBinomialHypersurfaces
title_full OnHilbert-KunzFunctionofBinomialHypersurfaces
title_fullStr OnHilbert-KunzFunctionofBinomialHypersurfaces
title_full_unstemmed OnHilbert-KunzFunctionofBinomialHypersurfaces
title_sort onhilbert-kunzfunctionofbinomialhypersurfaces
url http://ndltd.ncl.edu.tw/handle/07484736150486094939
work_keys_str_mv AT xièxìnhóng onhilbertkunzfunctionofbinomialhypersurfaces
_version_ 1718028634152763392