The limit theorems of random elements in spaces of type p

博士 === 國立清華大學 === 數學系 === 85 === We cosider some limit problems of random elements in this paper. In Chppter 1,we give the basic definitions and elementry properties of random elements. And we introduce a space of type p and the Levy''s inequali...

Full description

Bibliographic Details
Main Authors: Chang, Hen-Chao, 張亨兆
Other Authors: Tien-Chung Hu
Format: Others
Language:zh-TW
Published: 1997
Online Access:http://ndltd.ncl.edu.tw/handle/27628168932584654116
id ndltd-TW-085NTHU0479025
record_format oai_dc
spelling ndltd-TW-085NTHU04790252015-10-13T18:05:33Z http://ndltd.ncl.edu.tw/handle/27628168932584654116 The limit theorems of random elements in spaces of type p 類型p空間上之隨機元的極限定理 Chang, Hen-Chao 張亨兆 博士 國立清華大學 數學系 85 We cosider some limit problems of random elements in this paper. In Chppter 1,we give the basic definitions and elementry properties of random elements. And we introduce a space of type p and the Levy''s inequalities in Banach spaces. In Chapter 2, we consider the necessary and sufficent conditions of complete convergence of arrayes of random elements. In Section 2.2, we obtain the sufficent condions of polynamial order. In Section 2.3, the necessary result is proved. In Section 2.4, we consider the general cases. In Chapter 3, we consider the almost sure convergence of weighted sums, using the Marcinkiewicz''s law of large numbers in a space of type p. In Section 3.2, we develop a tool-the Marcinkiewicz''s law of large numbers in a space of type p. In Section 3.3, we discuss the almost sure convergence of weighted sums of a sequence of random elements, and the weight is an array of random variables. Tien-Chung Hu 胡殿中 1997 學位論文 ; thesis 48 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 博士 === 國立清華大學 === 數學系 === 85 === We cosider some limit problems of random elements in this paper. In Chppter 1,we give the basic definitions and elementry properties of random elements. And we introduce a space of type p and the Levy''s inequalities in Banach spaces. In Chapter 2, we consider the necessary and sufficent conditions of complete convergence of arrayes of random elements. In Section 2.2, we obtain the sufficent condions of polynamial order. In Section 2.3, the necessary result is proved. In Section 2.4, we consider the general cases. In Chapter 3, we consider the almost sure convergence of weighted sums, using the Marcinkiewicz''s law of large numbers in a space of type p. In Section 3.2, we develop a tool-the Marcinkiewicz''s law of large numbers in a space of type p. In Section 3.3, we discuss the almost sure convergence of weighted sums of a sequence of random elements, and the weight is an array of random variables.
author2 Tien-Chung Hu
author_facet Tien-Chung Hu
Chang, Hen-Chao
張亨兆
author Chang, Hen-Chao
張亨兆
spellingShingle Chang, Hen-Chao
張亨兆
The limit theorems of random elements in spaces of type p
author_sort Chang, Hen-Chao
title The limit theorems of random elements in spaces of type p
title_short The limit theorems of random elements in spaces of type p
title_full The limit theorems of random elements in spaces of type p
title_fullStr The limit theorems of random elements in spaces of type p
title_full_unstemmed The limit theorems of random elements in spaces of type p
title_sort limit theorems of random elements in spaces of type p
publishDate 1997
url http://ndltd.ncl.edu.tw/handle/27628168932584654116
work_keys_str_mv AT changhenchao thelimittheoremsofrandomelementsinspacesoftypep
AT zhānghēngzhào thelimittheoremsofrandomelementsinspacesoftypep
AT changhenchao lèixíngpkōngjiānshàngzhīsuíjīyuándejíxiàndìnglǐ
AT zhānghēngzhào lèixíngpkōngjiānshàngzhīsuíjīyuándejíxiàndìnglǐ
AT changhenchao limittheoremsofrandomelementsinspacesoftypep
AT zhānghēngzhào limittheoremsofrandomelementsinspacesoftypep
_version_ 1718028394884497408