The limit theorems of random elements in spaces of type p
博士 === 國立清華大學 === 數學系 === 85 === We cosider some limit problems of random elements in this paper. In Chppter 1,we give the basic definitions and elementry properties of random elements. And we introduce a space of type p and the Levy''s inequali...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
1997
|
Online Access: | http://ndltd.ncl.edu.tw/handle/27628168932584654116 |
id |
ndltd-TW-085NTHU0479025 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-085NTHU04790252015-10-13T18:05:33Z http://ndltd.ncl.edu.tw/handle/27628168932584654116 The limit theorems of random elements in spaces of type p 類型p空間上之隨機元的極限定理 Chang, Hen-Chao 張亨兆 博士 國立清華大學 數學系 85 We cosider some limit problems of random elements in this paper. In Chppter 1,we give the basic definitions and elementry properties of random elements. And we introduce a space of type p and the Levy''s inequalities in Banach spaces. In Chapter 2, we consider the necessary and sufficent conditions of complete convergence of arrayes of random elements. In Section 2.2, we obtain the sufficent condions of polynamial order. In Section 2.3, the necessary result is proved. In Section 2.4, we consider the general cases. In Chapter 3, we consider the almost sure convergence of weighted sums, using the Marcinkiewicz''s law of large numbers in a space of type p. In Section 3.2, we develop a tool-the Marcinkiewicz''s law of large numbers in a space of type p. In Section 3.3, we discuss the almost sure convergence of weighted sums of a sequence of random elements, and the weight is an array of random variables. Tien-Chung Hu 胡殿中 1997 學位論文 ; thesis 48 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
博士 === 國立清華大學 === 數學系 === 85 === We cosider some limit problems of random elements in this paper.
In Chppter 1,we give the basic definitions and elementry
properties of random elements. And we introduce a space of type
p and the Levy''s inequalities in Banach spaces. In Chapter 2,
we consider the necessary and sufficent conditions of complete
convergence of arrayes of random elements. In Section 2.2, we
obtain the sufficent condions of polynamial order. In Section
2.3, the necessary result is proved. In Section 2.4, we consider
the general cases. In Chapter 3, we consider the almost sure
convergence of weighted sums, using the Marcinkiewicz''s law of
large numbers in a space of type p. In Section 3.2, we develop a
tool-the Marcinkiewicz''s law of large numbers in a space of type
p. In Section 3.3, we discuss the almost sure convergence of
weighted sums of a sequence of random elements, and the weight
is an array of random variables.
|
author2 |
Tien-Chung Hu |
author_facet |
Tien-Chung Hu Chang, Hen-Chao 張亨兆 |
author |
Chang, Hen-Chao 張亨兆 |
spellingShingle |
Chang, Hen-Chao 張亨兆 The limit theorems of random elements in spaces of type p |
author_sort |
Chang, Hen-Chao |
title |
The limit theorems of random elements in spaces of type p |
title_short |
The limit theorems of random elements in spaces of type p |
title_full |
The limit theorems of random elements in spaces of type p |
title_fullStr |
The limit theorems of random elements in spaces of type p |
title_full_unstemmed |
The limit theorems of random elements in spaces of type p |
title_sort |
limit theorems of random elements in spaces of type p |
publishDate |
1997 |
url |
http://ndltd.ncl.edu.tw/handle/27628168932584654116 |
work_keys_str_mv |
AT changhenchao thelimittheoremsofrandomelementsinspacesoftypep AT zhānghēngzhào thelimittheoremsofrandomelementsinspacesoftypep AT changhenchao lèixíngpkōngjiānshàngzhīsuíjīyuándejíxiàndìnglǐ AT zhānghēngzhào lèixíngpkōngjiānshàngzhīsuíjīyuándejíxiàndìnglǐ AT changhenchao limittheoremsofrandomelementsinspacesoftypep AT zhānghēngzhào limittheoremsofrandomelementsinspacesoftypep |
_version_ |
1718028394884497408 |