On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls

碩士 === 國立中央大學 === 數學系 === 85 === In recent years mathematicians have paid much attention to theexistence of positive solutions of the elliptic equations involvingcritical exponents. However, in this paper we consider the Dirichlet probl...

Full description

Bibliographic Details
Main Authors: Liu, Yi-Xian, 劉益先
Other Authors: Chern Jann-Long
Format: Others
Language:zh-TW
Published: 1997
Online Access:http://ndltd.ncl.edu.tw/handle/21059730916156360690
id ndltd-TW-085NCU00479013
record_format oai_dc
spelling ndltd-TW-085NCU004790132015-10-13T17:59:41Z http://ndltd.ncl.edu.tw/handle/21059730916156360690 On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls 半線性橢圓型微分方程在有限球上的Dirichlet問題之探討 Liu, Yi-Xian 劉益先 碩士 國立中央大學 數學系 85 In recent years mathematicians have paid much attention to theexistence of positive solutions of the elliptic equations involvingcritical exponents. However, in this paper we consider the Dirichlet problem of thesemilinear elliptic equation.$$\left\{\eqalign{&\lap u+k(|x|)u+K(|x|)u^{n+2\over n-2 }=0 \quad\hbox{in~}B_R \cr &u>0 \quad\hbox{in~} B_R \cr &u|_{\partial B_R}=0 \cr }\right.\eqno (1.1) $$where $n\geq 3, \lap=\sum_{i=1}^n{\partial^2\over {\partial x_i^2}}$,and $B_R=\{x=(x_1,x_2,\cdots,x_n)~|~x_1^2+x_2 ^2+\cdots +x_n^2<R^2\}$ and $k$ and $K$ are two given smooth functions. We shall give someexistence result of solutions of Eq.$(1.1)$ for suitable radius $R$. Eq.$(1.1)$ arises from Riemannian geometry. Here we give a briefdescription. Let $(M, g)$ be a Riemann manifold of dimension $n,~n\geq 2$, and $K( \cdot)$ be a given function on $M$. The following question has been raised: can we find a new metric $g_1$ on $M$ such that $K$ is the scalar curvature of $g_1$ and $g_1$ isconformal to $g$ (that is, $g_1=\phi g$ for some positive function $\phi$ on $M$)? In the case $n\geq 3$, if we write $\phi=u^{4\over n-2}, ~u>0$, then this is equivalent to the problem of solving the elliptic equation:$${4(n-1)\over{(n-2)}}\lap_gu-ku+Ku^{{n+2\over n-2}}=0\eqno (1.2) $$ on $M$, where $\lap_g$ and $k$ are the Laplace-Betrami operator and thescalar curvature on $M$ in the $g$-metric respectively. Here we are interested in the radial solutions of the equation$(1.1)$. For this purpose, the equation $(1.1)$ is equivalent to$$\left\{\eqalign{&u''(r)+{n-1\over r}u'(r)+k(r)u(r)+K(r)u^{n+2\over n-2}(r)=0\quad\hbox{in~} [0, R]\cr &u(0)=\alpha>0, u'(0)=0, u(R)=0 \cr }\right.\eqno (1.3) $$ Firstly, we consider, the following equation.$$\left\{\eqalign{&v''(r)+{n-1\over r}v'(r)+K(r)u^{n+2 \over n-2}=0\quadr\in [0,R] \cr&v(0)=\alpha>0, v'(0)=0, v(R)=0, v>0\quad\hbox{on~} [0,R)\cr}\right.\eqno (1.4)$$where $K(r)$ is a smooth function on $[0,R]$. For Eq. (1.4), we have the following theorem \Thm 1.1 Suppose that $K(r)$ is a smooth function, and satisfies$K(r)=K(0)+Ar^\sigma+o(r^\sigma)$, and $K'(r)=\sigma Ar^{\sigma -1}+o(r^{\sigma -1})$ as$r\to 0$ for some constants $K(0)>0,~~A>0$, and $0<\sigma<n-2$. Then there exists an $\alpha_1>0$, such that for each $\alpha\geq \alpha_1$, the equation $(1.4)$ has a solution on $[0,R]$ where $0<R=R(\alpha)$ isdependent on the initial value $v(0)=\alpha$. Before stating our main result we also need the following comparison lemma, \Lem 1,2 Suppose that $u(r),~v(r)$ satisfy$$ \eqalignno{&\lap u+K_1(r)u\leq 0 \quad x\in B_R&(1.5) \cr &\lap v+K_2(r)v\geq 0 \quad x\in B_R&(1.6) \cr}$$\nd respectively, where $r=|x|$, and $K_1(r)\geq K_2(r),~~u(r)>0$ and$u(0)=v(0)$. Then $v(r)\geq u(r)>0$ in $B_R$. Now coming back to our problem Eq.(1.3), we obtain the following main result:\Thm 1.1 Suppose that \itemitem{(i)}$K(r)$ is a smooth function, and satisfies $K(r)=K(0)+Ar^\sigma+o(r^\sigma)$, and $K'(r)=\sigmaAr^{\sigma -1}+o(r^{\sigma -1})$ as $r \to 0$ for some constants $K(0)>0,~A>0,$ and $0<\sigma <n-2$.\itemitem{(ii) } $k(r)$ is a continuous function and $k(r)\geqK(r)\alpha_2^{{4 \over n-2}}$ where $\alpha_2 \geq \alpha_1$ is a constant, and $\alpha_1>0$ is the constant given in $Theorem ~1.1$.Then for $\alpha_1\leq\alpha\leq\alpha_2$, the equation $(1.3)$ has a solution on $[0,R]$ where $0<R=R(\alpha)$ is dependent on the initial value$u(0)=\alpha$. Chern Jann-Long 陳建隆 1997 學位論文 ; thesis 20 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
author2 Chern Jann-Long
author_facet Chern Jann-Long
Liu, Yi-Xian
劉益先
author Liu, Yi-Xian
劉益先
spellingShingle Liu, Yi-Xian
劉益先
On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls
author_sort Liu, Yi-Xian
title On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls
title_short On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls
title_full On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls
title_fullStr On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls
title_full_unstemmed On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls
title_sort on the dirichlet problem of some semilinear elliptic equation in finite balls
publishDate 1997
url http://ndltd.ncl.edu.tw/handle/21059730916156360690
work_keys_str_mv AT liuyixian onthedirichletproblemofsomesemilinearellipticequationinfiniteballs
AT liúyìxiān onthedirichletproblemofsomesemilinearellipticequationinfiniteballs
AT liuyixian bànxiànxìngtuǒyuánxíngwēifēnfāngchéngzàiyǒuxiànqiúshàngdedirichletwèntízhītàntǎo
AT liúyìxiān bànxiànxìngtuǒyuánxíngwēifēnfāngchéngzàiyǒuxiànqiúshàngdedirichletwèntízhītàntǎo
_version_ 1718027546479558656
description 碩士 === 國立中央大學 === 數學系 === 85 === In recent years mathematicians have paid much attention to theexistence of positive solutions of the elliptic equations involvingcritical exponents. However, in this paper we consider the Dirichlet problem of thesemilinear elliptic equation.$$\left\{\eqalign{&\lap u+k(|x|)u+K(|x|)u^{n+2\over n-2 }=0 \quad\hbox{in~}B_R \cr &u>0 \quad\hbox{in~} B_R \cr &u|_{\partial B_R}=0 \cr }\right.\eqno (1.1) $$where $n\geq 3, \lap=\sum_{i=1}^n{\partial^2\over {\partial x_i^2}}$,and $B_R=\{x=(x_1,x_2,\cdots,x_n)~|~x_1^2+x_2 ^2+\cdots +x_n^2<R^2\}$ and $k$ and $K$ are two given smooth functions. We shall give someexistence result of solutions of Eq.$(1.1)$ for suitable radius $R$. Eq.$(1.1)$ arises from Riemannian geometry. Here we give a briefdescription. Let $(M, g)$ be a Riemann manifold of dimension $n,~n\geq 2$, and $K( \cdot)$ be a given function on $M$. The following question has been raised: can we find a new metric $g_1$ on $M$ such that $K$ is the scalar curvature of $g_1$ and $g_1$ isconformal to $g$ (that is, $g_1=\phi g$ for some positive function $\phi$ on $M$)? In the case $n\geq 3$, if we write $\phi=u^{4\over n-2}, ~u>0$, then this is equivalent to the problem of solving the elliptic equation:$${4(n-1)\over{(n-2)}}\lap_gu-ku+Ku^{{n+2\over n-2}}=0\eqno (1.2) $$ on $M$, where $\lap_g$ and $k$ are the Laplace-Betrami operator and thescalar curvature on $M$ in the $g$-metric respectively. Here we are interested in the radial solutions of the equation$(1.1)$. For this purpose, the equation $(1.1)$ is equivalent to$$\left\{\eqalign{&u''(r)+{n-1\over r}u'(r)+k(r)u(r)+K(r)u^{n+2\over n-2}(r)=0\quad\hbox{in~} [0, R]\cr &u(0)=\alpha>0, u'(0)=0, u(R)=0 \cr }\right.\eqno (1.3) $$ Firstly, we consider, the following equation.$$\left\{\eqalign{&v''(r)+{n-1\over r}v'(r)+K(r)u^{n+2 \over n-2}=0\quadr\in [0,R] \cr&v(0)=\alpha>0, v'(0)=0, v(R)=0, v>0\quad\hbox{on~} [0,R)\cr}\right.\eqno (1.4)$$where $K(r)$ is a smooth function on $[0,R]$. For Eq. (1.4), we have the following theorem \Thm 1.1 Suppose that $K(r)$ is a smooth function, and satisfies$K(r)=K(0)+Ar^\sigma+o(r^\sigma)$, and $K'(r)=\sigma Ar^{\sigma -1}+o(r^{\sigma -1})$ as$r\to 0$ for some constants $K(0)>0,~~A>0$, and $0<\sigma<n-2$. Then there exists an $\alpha_1>0$, such that for each $\alpha\geq \alpha_1$, the equation $(1.4)$ has a solution on $[0,R]$ where $0<R=R(\alpha)$ isdependent on the initial value $v(0)=\alpha$. Before stating our main result we also need the following comparison lemma, \Lem 1,2 Suppose that $u(r),~v(r)$ satisfy$$ \eqalignno{&\lap u+K_1(r)u\leq 0 \quad x\in B_R&(1.5) \cr &\lap v+K_2(r)v\geq 0 \quad x\in B_R&(1.6) \cr}$$\nd respectively, where $r=|x|$, and $K_1(r)\geq K_2(r),~~u(r)>0$ and$u(0)=v(0)$. Then $v(r)\geq u(r)>0$ in $B_R$. Now coming back to our problem Eq.(1.3), we obtain the following main result:\Thm 1.1 Suppose that \itemitem{(i)}$K(r)$ is a smooth function, and satisfies $K(r)=K(0)+Ar^\sigma+o(r^\sigma)$, and $K'(r)=\sigmaAr^{\sigma -1}+o(r^{\sigma -1})$ as $r \to 0$ for some constants $K(0)>0,~A>0,$ and $0<\sigma <n-2$.\itemitem{(ii) } $k(r)$ is a continuous function and $k(r)\geqK(r)\alpha_2^{{4 \over n-2}}$ where $\alpha_2 \geq \alpha_1$ is a constant, and $\alpha_1>0$ is the constant given in $Theorem ~1.1$.Then for $\alpha_1\leq\alpha\leq\alpha_2$, the equation $(1.3)$ has a solution on $[0,R]$ where $0<R=R(\alpha)$ is dependent on the initial value$u(0)=\alpha$.