On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls
碩士 === 國立中央大學 === 數學系 === 85 === In recent years mathematicians have paid much attention to theexistence of positive solutions of the elliptic equations involvingcritical exponents. However, in this paper we consider the Dirichlet probl...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
1997
|
Online Access: | http://ndltd.ncl.edu.tw/handle/21059730916156360690 |
id |
ndltd-TW-085NCU00479013 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-085NCU004790132015-10-13T17:59:41Z http://ndltd.ncl.edu.tw/handle/21059730916156360690 On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls 半線性橢圓型微分方程在有限球上的Dirichlet問題之探討 Liu, Yi-Xian 劉益先 碩士 國立中央大學 數學系 85 In recent years mathematicians have paid much attention to theexistence of positive solutions of the elliptic equations involvingcritical exponents. However, in this paper we consider the Dirichlet problem of thesemilinear elliptic equation.$$\left\{\eqalign{&\lap u+k(|x|)u+K(|x|)u^{n+2\over n-2 }=0 \quad\hbox{in~}B_R \cr &u>0 \quad\hbox{in~} B_R \cr &u|_{\partial B_R}=0 \cr }\right.\eqno (1.1) $$where $n\geq 3, \lap=\sum_{i=1}^n{\partial^2\over {\partial x_i^2}}$,and $B_R=\{x=(x_1,x_2,\cdots,x_n)~|~x_1^2+x_2 ^2+\cdots +x_n^2<R^2\}$ and $k$ and $K$ are two given smooth functions. We shall give someexistence result of solutions of Eq.$(1.1)$ for suitable radius $R$. Eq.$(1.1)$ arises from Riemannian geometry. Here we give a briefdescription. Let $(M, g)$ be a Riemann manifold of dimension $n,~n\geq 2$, and $K( \cdot)$ be a given function on $M$. The following question has been raised: can we find a new metric $g_1$ on $M$ such that $K$ is the scalar curvature of $g_1$ and $g_1$ isconformal to $g$ (that is, $g_1=\phi g$ for some positive function $\phi$ on $M$)? In the case $n\geq 3$, if we write $\phi=u^{4\over n-2}, ~u>0$, then this is equivalent to the problem of solving the elliptic equation:$${4(n-1)\over{(n-2)}}\lap_gu-ku+Ku^{{n+2\over n-2}}=0\eqno (1.2) $$ on $M$, where $\lap_g$ and $k$ are the Laplace-Betrami operator and thescalar curvature on $M$ in the $g$-metric respectively. Here we are interested in the radial solutions of the equation$(1.1)$. For this purpose, the equation $(1.1)$ is equivalent to$$\left\{\eqalign{&u''(r)+{n-1\over r}u'(r)+k(r)u(r)+K(r)u^{n+2\over n-2}(r)=0\quad\hbox{in~} [0, R]\cr &u(0)=\alpha>0, u'(0)=0, u(R)=0 \cr }\right.\eqno (1.3) $$ Firstly, we consider, the following equation.$$\left\{\eqalign{&v''(r)+{n-1\over r}v'(r)+K(r)u^{n+2 \over n-2}=0\quadr\in [0,R] \cr&v(0)=\alpha>0, v'(0)=0, v(R)=0, v>0\quad\hbox{on~} [0,R)\cr}\right.\eqno (1.4)$$where $K(r)$ is a smooth function on $[0,R]$. For Eq. (1.4), we have the following theorem \Thm 1.1 Suppose that $K(r)$ is a smooth function, and satisfies$K(r)=K(0)+Ar^\sigma+o(r^\sigma)$, and $K'(r)=\sigma Ar^{\sigma -1}+o(r^{\sigma -1})$ as$r\to 0$ for some constants $K(0)>0,~~A>0$, and $0<\sigma<n-2$. Then there exists an $\alpha_1>0$, such that for each $\alpha\geq \alpha_1$, the equation $(1.4)$ has a solution on $[0,R]$ where $0<R=R(\alpha)$ isdependent on the initial value $v(0)=\alpha$. Before stating our main result we also need the following comparison lemma, \Lem 1,2 Suppose that $u(r),~v(r)$ satisfy$$ \eqalignno{&\lap u+K_1(r)u\leq 0 \quad x\in B_R&(1.5) \cr &\lap v+K_2(r)v\geq 0 \quad x\in B_R&(1.6) \cr}$$\nd respectively, where $r=|x|$, and $K_1(r)\geq K_2(r),~~u(r)>0$ and$u(0)=v(0)$. Then $v(r)\geq u(r)>0$ in $B_R$. Now coming back to our problem Eq.(1.3), we obtain the following main result:\Thm 1.1 Suppose that \itemitem{(i)}$K(r)$ is a smooth function, and satisfies $K(r)=K(0)+Ar^\sigma+o(r^\sigma)$, and $K'(r)=\sigmaAr^{\sigma -1}+o(r^{\sigma -1})$ as $r \to 0$ for some constants $K(0)>0,~A>0,$ and $0<\sigma <n-2$.\itemitem{(ii) } $k(r)$ is a continuous function and $k(r)\geqK(r)\alpha_2^{{4 \over n-2}}$ where $\alpha_2 \geq \alpha_1$ is a constant, and $\alpha_1>0$ is the constant given in $Theorem ~1.1$.Then for $\alpha_1\leq\alpha\leq\alpha_2$, the equation $(1.3)$ has a solution on $[0,R]$ where $0<R=R(\alpha)$ is dependent on the initial value$u(0)=\alpha$. Chern Jann-Long 陳建隆 1997 學位論文 ; thesis 20 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
author2 |
Chern Jann-Long |
author_facet |
Chern Jann-Long Liu, Yi-Xian 劉益先 |
author |
Liu, Yi-Xian 劉益先 |
spellingShingle |
Liu, Yi-Xian 劉益先 On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls |
author_sort |
Liu, Yi-Xian |
title |
On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls |
title_short |
On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls |
title_full |
On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls |
title_fullStr |
On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls |
title_full_unstemmed |
On the Dirichlet Problem of Some Semilinear Elliptic Equation in Finite Balls |
title_sort |
on the dirichlet problem of some semilinear elliptic equation in finite balls |
publishDate |
1997 |
url |
http://ndltd.ncl.edu.tw/handle/21059730916156360690 |
work_keys_str_mv |
AT liuyixian onthedirichletproblemofsomesemilinearellipticequationinfiniteballs AT liúyìxiān onthedirichletproblemofsomesemilinearellipticequationinfiniteballs AT liuyixian bànxiànxìngtuǒyuánxíngwēifēnfāngchéngzàiyǒuxiànqiúshàngdedirichletwèntízhītàntǎo AT liúyìxiān bànxiànxìngtuǒyuánxíngwēifēnfāngchéngzàiyǒuxiànqiúshàngdedirichletwèntízhītàntǎo |
_version_ |
1718027546479558656 |
description |
碩士 === 國立中央大學 === 數學系 === 85 === In recent years mathematicians have paid much attention to
theexistence of positive solutions of the elliptic equations
involvingcritical exponents. However, in this paper we
consider the Dirichlet problem of thesemilinear elliptic
equation.$$\left\{\eqalign{&\lap u+k(|x|)u+K(|x|)u^{n+2\over n-2
}=0 \quad\hbox{in~}B_R \cr &u>0 \quad\hbox{in~}
B_R \cr &u|_{\partial B_R}=0 \cr }\right.\eqno
(1.1) $$where $n\geq 3, \lap=\sum_{i=1}^n{\partial^2\over
{\partial x_i^2}}$,and $B_R=\{x=(x_1,x_2,\cdots,x_n)~|~x_1^2+x_2
^2+\cdots +x_n^2<R^2\}$ and $k$ and $K$ are two given smooth
functions. We shall give someexistence result of solutions of
Eq.$(1.1)$ for suitable radius $R$. Eq.$(1.1)$ arises from
Riemannian geometry. Here we give a briefdescription. Let $(M,
g)$ be a Riemann manifold of dimension $n,~n\geq 2$, and $K(
\cdot)$ be a given function on $M$. The following question has
been raised: can we find a new metric $g_1$ on $M$ such that $K$
is the scalar curvature of $g_1$ and $g_1$ isconformal to $g$
(that is, $g_1=\phi g$ for some positive function $\phi$ on
$M$)? In the case $n\geq 3$, if we write $\phi=u^{4\over n-2},
~u>0$, then this is equivalent to the problem of solving the
elliptic equation:$${4(n-1)\over{(n-2)}}\lap_gu-ku+Ku^{{n+2\over
n-2}}=0\eqno (1.2) $$ on $M$, where $\lap_g$ and $k$ are the
Laplace-Betrami operator and thescalar curvature on $M$ in the
$g$-metric respectively. Here we are interested in the radial
solutions of the equation$(1.1)$. For this purpose, the equation
$(1.1)$ is equivalent to$$\left\{\eqalign{&u''(r)+{n-1\over
r}u'(r)+k(r)u(r)+K(r)u^{n+2\over n-2}(r)=0\quad\hbox{in~} [0,
R]\cr &u(0)=\alpha>0, u'(0)=0, u(R)=0 \cr
}\right.\eqno (1.3) $$ Firstly, we consider, the following
equation.$$\left\{\eqalign{&v''(r)+{n-1\over r}v'(r)+K(r)u^{n+2
\over n-2}=0\quadr\in [0,R] \cr&v(0)=\alpha>0, v'(0)=0, v(R)=0,
v>0\quad\hbox{on~} [0,R)\cr}\right.\eqno (1.4)$$where $K(r)$ is
a smooth function on $[0,R]$. For Eq. (1.4), we have the
following theorem \Thm 1.1 Suppose that $K(r)$ is a smooth
function, and satisfies$K(r)=K(0)+Ar^\sigma+o(r^\sigma)$, and
$K'(r)=\sigma Ar^{\sigma -1}+o(r^{\sigma -1})$ as$r\to 0$ for
some constants $K(0)>0,~~A>0$, and $0<\sigma<n-2$. Then there
exists an $\alpha_1>0$, such that for each $\alpha\geq
\alpha_1$, the equation $(1.4)$ has a solution on $[0,R]$ where
$0<R=R(\alpha)$ isdependent on the initial value $v(0)=\alpha$.
Before stating our main result we also need the following
comparison lemma, \Lem 1,2 Suppose that $u(r),~v(r)$ satisfy$$
\eqalignno{&\lap u+K_1(r)u\leq 0 \quad x\in B_R&(1.5) \cr
&\lap v+K_2(r)v\geq 0 \quad x\in B_R&(1.6) \cr}$$\nd
respectively, where $r=|x|$, and $K_1(r)\geq K_2(r),~~u(r)>0$
and$u(0)=v(0)$. Then $v(r)\geq u(r)>0$ in $B_R$. Now coming
back to our problem Eq.(1.3), we obtain the following main
result:\Thm 1.1 Suppose that \itemitem{(i)}$K(r)$ is a smooth
function, and satisfies $K(r)=K(0)+Ar^\sigma+o(r^\sigma)$, and
$K'(r)=\sigmaAr^{\sigma -1}+o(r^{\sigma -1})$ as $r \to 0$ for
some constants $K(0)>0,~A>0,$ and $0<\sigma <n-2$.\itemitem{(ii)
} $k(r)$ is a continuous function and $k(r)\geqK(r)\alpha_2^{{4
\over n-2}}$ where $\alpha_2 \geq \alpha_1$ is a constant, and
$\alpha_1>0$ is the constant given in $Theorem ~1.1$.Then for
$\alpha_1\leq\alpha\leq\alpha_2$, the equation $(1.3)$ has a
solution on $[0,R]$ where $0<R=R(\alpha)$ is dependent on the
initial value$u(0)=\alpha$.
|