Interference-free Curve Fitting with Arcs for B-Spline Curves
碩士 === 國立中興大學 === 機械工程學系 === 85 === The object of this paper is to develop a efficinet algorithm to approximatea B-Spline curve. The algorithm is applied to construct a smooth curve withG1 continuity and without causing any interference.A B...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
1997
|
Online Access: | http://ndltd.ncl.edu.tw/handle/86308884162677258777 |
Summary: | 碩士 === 國立中興大學 === 機械工程學系 === 85 === The object of this paper is to develop a efficinet algorithm to
approximatea B-Spline curve. The algorithm is applied to
construct a smooth curve withG1 continuity and without causing
any interference.A B-Spline curve is decomposed into piecewise
Bezier curves. Using convexhulls of the Bezier curves to protect
the original curve from interferencethe line segments on the
same side consist the approximating curve. Basedon the obtained
approximating line segments, Biarcs fitting and Circularsingle-
arc fitting methods are applied to construct a smooth curve with
G1continuity and without causing any interference. If the
resulting curve isapplied to generate tool paths for pocketing
boundaries with B-Splinecurve, the overcutting problem can be
eliminated completely and abruptdirection changes on tool paths
can be greatly improved.
|
---|