Level sets and coarea formula of approximately differentialble

碩士 === 國立臺灣大學 === 數學系 === 84 === It is well-known that if $f$ is a Lipschitz function from $R^n$ into $R^m$, then almost all level sets are $(H^{n-m}, n-m)$- rect- ifiable, and the coarea formula holds for $f$. Two questions: Whether level...

Full description

Bibliographic Details
Main Authors: Wu, Ming-Yih, 吳明義
Other Authors: Liu, Fon-Che
Format: Others
Language:zh-TW
Published: 1996
Online Access:http://ndltd.ncl.edu.tw/handle/95287481315023347151
Description
Summary:碩士 === 國立臺灣大學 === 數學系 === 84 === It is well-known that if $f$ is a Lipschitz function from $R^n$ into $R^m$, then almost all level sets are $(H^{n-m}, n-m)$- rect- ifiable, and the coarea formula holds for $f$. Two questions: Whether level sets of functions from other classes have similar immediately present themselves "rectifiablity property"? Whether the similiar coarea formula holds for functions from other cla- sses? Therefore, this thesis will deal with these questions.