Oscillation in Neutral Equations with Integrable Coefficients
碩士 === 輔仁大學 === 數學系研究所 === 84 === The author obtains some new sufficient conditions for the oscillation of all solutions of the next two neutral differential equations : $$(1) \qquad \frac{d}{dt}[X(t)-R(t)X(t-r)]+P(t)X(t-\tau)-Q(t)X(t-\d...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
1996
|
Online Access: | http://ndltd.ncl.edu.tw/handle/57639612354535389593 |
Summary: | 碩士 === 輔仁大學 === 數學系研究所 === 84 === The author obtains some new sufficient conditions for the
oscillation of all solutions of
the next two neutral differential equations :
$$(1) \qquad \frac{d}{dt}[X(t)-R(t)X(t-r)]+P(t)X(t-\tau)-Q(t)X(t-\delta)=0$$
where $P,Q,R \in C([t_0,\infty ),R^+),r\in (0,\infty ),\tau
,\delta \in R^+.$\ $$(2) \qquad \frac{d^n}{dt^n}[X(t)-R(t)X(t-r)]+P(t)X(t-\tau)-Q(
t)X(t-\delta)=0$$
where $n\ge 3,n ~~\mbox{is odd} , P,Q,R \in C([t_0,\infty
),R^+),r\in (0,\infty ),\tau ,\delta \in R^+.$\ without the usual hypothesis
$$\int _{t_0}^{\infty}[p(s)-Q(s-\tau+\delta)]ds=\infty$$
|
---|