Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method
碩士 === 逢甲大學 === 自動控制工程研究所 === 84 === This thesis studies two nonlinear identification methods, the radial basisfunction method and the Kolmogorov-Gabor polynomial method, applied on thecontrol of atwo-link robot manipulator. It is...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
1996
|
Online Access: | http://ndltd.ncl.edu.tw/handle/00066204874398313824 |
id |
ndltd-TW-084FCU00146014 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-084FCU001460142015-10-13T12:28:52Z http://ndltd.ncl.edu.tw/handle/00066204874398313824 Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method 非線性鑑別在雙桿機械臂迴授線性化控制的應用-放射狀基底函數法與Kolmogorov-Gabor多項式法 Chio, E.L. 邱奕郎 碩士 逢甲大學 自動控制工程研究所 84 This thesis studies two nonlinear identification methods, the radial basisfunction method and the Kolmogorov-Gabor polynomial method, applied on thecontrol of atwo-link robot manipulator. It is well known that two-link robotmanipulators are highly nonlinear systems. A feedback linearization method isapplied to linearize the system. After that, a PID controller is employed tocontrol the linearized system. In the linearization loop, nonlinear functionmust be given. Usually, these nonlinear functions are obtained by thederivation of the system model. In contrast, this thesis uses two nonlinearidentification methods to get these nonlinear functions without knowing thesystem parameters. Simulation results show that both nonlinear identificationmethods work well for the set-point control of robot manipulators. However, asimple decoupling test is performed and shows that the Kolmogorov-Gaborpolynomial method is better than the radial basis function method. This mayhint that, in many nonlinear identification methods, whether one can select amethod whose bases' functions are close to the nonlinear system is veryimportant. Shiaw-Wu Chen 陳孝武 1996 學位論文 ; thesis 1 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 逢甲大學 === 自動控制工程研究所 === 84 === This thesis studies two nonlinear identification methods,
the radial basisfunction method and the Kolmogorov-Gabor
polynomial method, applied on thecontrol of atwo-link robot
manipulator. It is well known that two-link robotmanipulators
are highly nonlinear systems. A feedback linearization method
isapplied to linearize the system. After that, a PID
controller is employed tocontrol the linearized system. In the
linearization loop, nonlinear functionmust be given.
Usually, these nonlinear functions are obtained by
thederivation of the system model. In contrast, this thesis
uses two nonlinearidentification methods to get these nonlinear
functions without knowing thesystem parameters. Simulation
results show that both nonlinear identificationmethods work
well for the set-point control of robot manipulators. However,
asimple decoupling test is performed and shows that the
Kolmogorov-Gaborpolynomial method is better than the radial
basis function method. This mayhint that, in many nonlinear
identification methods, whether one can select amethod whose
bases' functions are close to the nonlinear system is
veryimportant.
|
author2 |
Shiaw-Wu Chen |
author_facet |
Shiaw-Wu Chen Chio, E.L. 邱奕郎 |
author |
Chio, E.L. 邱奕郎 |
spellingShingle |
Chio, E.L. 邱奕郎 Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method |
author_sort |
Chio, E.L. |
title |
Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method |
title_short |
Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method |
title_full |
Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method |
title_fullStr |
Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method |
title_full_unstemmed |
Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method |
title_sort |
nonlinear identification on feedback linearizatin control of a two-link robot manipulator-radial basis function method and kolmogorov-gabor method |
publishDate |
1996 |
url |
http://ndltd.ncl.edu.tw/handle/00066204874398313824 |
work_keys_str_mv |
AT chioel nonlinearidentificationonfeedbacklinearizatincontrolofatwolinkrobotmanipulatorradialbasisfunctionmethodandkolmogorovgabormethod AT qiūyìláng nonlinearidentificationonfeedbacklinearizatincontrolofatwolinkrobotmanipulatorradialbasisfunctionmethodandkolmogorovgabormethod AT chioel fēixiànxìngjiànbiézàishuānggǎnjīxièbìhuíshòuxiànxìnghuàkòngzhìdeyīngyòngfàngshèzhuàngjīdǐhánshùfǎyǔkolmogorovgaborduōxiàngshìfǎ AT qiūyìláng fēixiànxìngjiànbiézàishuānggǎnjīxièbìhuíshòuxiànxìnghuàkòngzhìdeyīngyòngfàngshèzhuàngjīdǐhánshùfǎyǔkolmogorovgaborduōxiàngshìfǎ |
_version_ |
1716860061555359744 |