Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method

碩士 === 逢甲大學 === 自動控制工程研究所 === 84 === This thesis studies two nonlinear identification methods, the radial basisfunction method and the Kolmogorov-Gabor polynomial method, applied on thecontrol of atwo-link robot manipulator. It is...

Full description

Bibliographic Details
Main Authors: Chio, E.L., 邱奕郎
Other Authors: Shiaw-Wu Chen
Format: Others
Language:zh-TW
Published: 1996
Online Access:http://ndltd.ncl.edu.tw/handle/00066204874398313824
id ndltd-TW-084FCU00146014
record_format oai_dc
spelling ndltd-TW-084FCU001460142015-10-13T12:28:52Z http://ndltd.ncl.edu.tw/handle/00066204874398313824 Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method 非線性鑑別在雙桿機械臂迴授線性化控制的應用-放射狀基底函數法與Kolmogorov-Gabor多項式法 Chio, E.L. 邱奕郎 碩士 逢甲大學 自動控制工程研究所 84 This thesis studies two nonlinear identification methods, the radial basisfunction method and the Kolmogorov-Gabor polynomial method, applied on thecontrol of atwo-link robot manipulator. It is well known that two-link robotmanipulators are highly nonlinear systems. A feedback linearization method isapplied to linearize the system. After that, a PID controller is employed tocontrol the linearized system. In the linearization loop, nonlinear functionmust be given. Usually, these nonlinear functions are obtained by thederivation of the system model. In contrast, this thesis uses two nonlinearidentification methods to get these nonlinear functions without knowing thesystem parameters. Simulation results show that both nonlinear identificationmethods work well for the set-point control of robot manipulators. However, asimple decoupling test is performed and shows that the Kolmogorov-Gaborpolynomial method is better than the radial basis function method. This mayhint that, in many nonlinear identification methods, whether one can select amethod whose bases' functions are close to the nonlinear system is veryimportant. Shiaw-Wu Chen 陳孝武 1996 學位論文 ; thesis 1 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 逢甲大學 === 自動控制工程研究所 === 84 === This thesis studies two nonlinear identification methods, the radial basisfunction method and the Kolmogorov-Gabor polynomial method, applied on thecontrol of atwo-link robot manipulator. It is well known that two-link robotmanipulators are highly nonlinear systems. A feedback linearization method isapplied to linearize the system. After that, a PID controller is employed tocontrol the linearized system. In the linearization loop, nonlinear functionmust be given. Usually, these nonlinear functions are obtained by thederivation of the system model. In contrast, this thesis uses two nonlinearidentification methods to get these nonlinear functions without knowing thesystem parameters. Simulation results show that both nonlinear identificationmethods work well for the set-point control of robot manipulators. However, asimple decoupling test is performed and shows that the Kolmogorov-Gaborpolynomial method is better than the radial basis function method. This mayhint that, in many nonlinear identification methods, whether one can select amethod whose bases' functions are close to the nonlinear system is veryimportant.
author2 Shiaw-Wu Chen
author_facet Shiaw-Wu Chen
Chio, E.L.
邱奕郎
author Chio, E.L.
邱奕郎
spellingShingle Chio, E.L.
邱奕郎
Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method
author_sort Chio, E.L.
title Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method
title_short Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method
title_full Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method
title_fullStr Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method
title_full_unstemmed Nonlinear Identification on Feedback Linearizatin Control of a Two-link Robot Manipulator-Radial Basis Function Method and Kolmogorov-Gabor Method
title_sort nonlinear identification on feedback linearizatin control of a two-link robot manipulator-radial basis function method and kolmogorov-gabor method
publishDate 1996
url http://ndltd.ncl.edu.tw/handle/00066204874398313824
work_keys_str_mv AT chioel nonlinearidentificationonfeedbacklinearizatincontrolofatwolinkrobotmanipulatorradialbasisfunctionmethodandkolmogorovgabormethod
AT qiūyìláng nonlinearidentificationonfeedbacklinearizatincontrolofatwolinkrobotmanipulatorradialbasisfunctionmethodandkolmogorovgabormethod
AT chioel fēixiànxìngjiànbiézàishuānggǎnjīxièbìhuíshòuxiànxìnghuàkòngzhìdeyīngyòngfàngshèzhuàngjīdǐhánshùfǎyǔkolmogorovgaborduōxiàngshìfǎ
AT qiūyìláng fēixiànxìngjiànbiézàishuānggǎnjīxièbìhuíshòuxiànxìnghuàkòngzhìdeyīngyòngfàngshèzhuàngjīdǐhánshùfǎyǔkolmogorovgaborduōxiàngshìfǎ
_version_ 1716860061555359744