Interpolatory Multiresolution Analysis And Its Applications
碩士 === 中原大學 === 應用數學研究所 === 84 === Daubechies 在 $L^2({\bf R})$. 上建構緊緻涵蓋的正交小波基底的架 構. 在早期的發展, 這些 Daubechies 小波已經被電子工程和影影像處理 密切的注意. 它提供一個次帶過濾方案的類別來正確的重建信號. Beylkin, Coifman 和 Rokhlin 使用這些緊緻涵蓋的小波經由截斷矩陣的 多重解析度分析表示中很小的元素來壓縮矩陣成為稀疏的矩...
Main Authors: | Shyu ,Wang-Shin, 徐旺興 |
---|---|
Other Authors: | Sun, Tien-Yu |
Format: | Others |
Language: | en_US |
Published: |
1996
|
Online Access: | http://ndltd.ncl.edu.tw/handle/00985060828548653374 |
Similar Items
-
Ternary interpolatory subdivision
by: Van der Walt, Maria Dorothea
Published: (2012) -
Convergence analysis of symmetric interpolatory subdivision schemes
by: Oloungha, Stephane B.
Published: (2010) -
On the non-existence of some interpolatory polynomials
by: C. H. Anderson, et al.
Published: (1986-01-01) -
Interpolatory bivariate refinable functions and subdivision
by: Rabarison, Andrianarivo Fabien
Published: (2009) -
Interpolatory refinable functions, subdivision and wavelets
by: Hunter, Karin M.
Published: (2007)