The Research of Modular Forms(The General Representation and Congruence Properties of Ramanujan's τFunction)
碩士 === 國立臺灣大學 === 數學系 === 82 === (a)利用 Klein's modular function J 的導數 J' 得出 τ(n) 的一般 式 (b)利用τ(n) 的一般式得出τ(n)為奇數的充要條件是n為奇數的完全 平方 (c)利用τ(n) 的一般式得出τ(2^a 3^b 5^c 7^d x^2) 恆不為零 (d)利用τ(n) 的一般式得出τ(n) 與 n*σ9(n) 同餘 (mod 25)...
Main Authors: | Tan Kuo, 郭旦 |
---|---|
Other Authors: | Lung Ji Miau |
Format: | Others |
Language: | zh-TW |
Published: |
1993
|
Online Access: | http://ndltd.ncl.edu.tw/handle/80758336044651552032 |
Similar Items
-
Ramanujan’s function k(τ)=r(τ)r2(2τ) and its modularity
by: Lee Yoonjin, et al.
Published: (2020-12-01) -
Congruence and identical properties of modular forms
by: Ashworth, M. H.
Published: (1968) -
Galois representations and congruence relations for coefficients of modular forms
by: Chien-Hsin Huang, et al.
Published: (2002) -
On higher congruences of modular Galois representations
by: Tsaknias, Panagiotis I.
Published: (2009) -
On a Generalization of Ramanujan's Sum
by: Hsiang-Ling Lai, et al.
Published: (2011)