On the Banach-Stone problem for $L^p$ spaces
碩士 === 國立中山大學 === 應用數學研究所 === 82 === A map $T: L^p(X) \to L^q(Y)$ $( 1 \le p, q \le \infty )$ is called disjointness-preserving if $ f \cdot g = 0$ a.e. implies $Tf \cdot Tg =0$ a.e. We say that a measure space $(X,{\cal B}, \mu) $ solves t...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Online Access: | http://ndltd.ncl.edu.tw/handle/38855059175674524085 |
id |
ndltd-TW-082NSYSU507011 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-082NSYSU5070112016-07-18T04:09:47Z http://ndltd.ncl.edu.tw/handle/38855059175674524085 On the Banach-Stone problem for $L^p$ spaces 在$L^p$空間上的巴拿赫-史東問題 Wu-Lang Day 戴武郎 碩士 國立中山大學 應用數學研究所 82 A map $T: L^p(X) \to L^q(Y)$ $( 1 \le p, q \le \infty )$ is called disjointness-preserving if $ f \cdot g = 0$ a.e. implies $Tf \cdot Tg =0$ a.e. We say that a measure space $(X,{\cal B}, \mu) $ solves the Banach-Stone problem for $L^p$-spaces if for an arbitrary measure space $ ( Y, {\cal A}, nu ) $ and $1 \le p < \infty $ , $ 1 \le q \le \infty $ or $p = q = \infty$ , every ( surjective when $ p = q = \infty $ ) disjointness-preserving bounded linear operator ( or linear isometry when $p \not = 2 , q \not = 2$) $T:L^p(X) \to L^q(Y)$ is of the Banach-Stone type, i.e. $Tf = h \cdot (f \circ \varphi) $ for all $f$ in $L^p(X)$, where $h$ is a scalar-valued measurable function defined on $Y$ and $ \varphi: Y \to X $ a measurable mapping. In this paper, a rather complete answer of this problem is obtained. In particu- lar, it is shown that every $\sigma$-finite measure space $( X, {\cal B}, \mu)$, with $X$ a Dedekind complete separable totally ordered space and $\cal B$ the order $\sigma$-algebra of $X$ , solves the Banach-Stone problem. And so do all their measurable subspaces. Our results can be applied to show that ${\cal R}^n$ , separable Hilbert spaces, separable Banach spaces , separable complete metrizable spaces, $\cdots$ , and all their measurable subspaces solve the Banach-Stone problem. This extends a famous result of Banach, which dealt with the case $1 \le p < \infty$, $q = p \not=2$ and $X=Y=[0,1]$ for linear isometries. Ngai-Ching Wong 黃毅青 學位論文 ; thesis 38 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中山大學 === 應用數學研究所 === 82 === A map $T: L^p(X) \to L^q(Y)$ $( 1 \le p, q \le \infty )$ is
called disjointness-preserving if $ f \cdot g = 0$ a.e. implies
$Tf \cdot Tg =0$ a.e. We say that a measure space $(X,{\cal B},
\mu) $ solves the Banach-Stone problem for $L^p$-spaces if for
an arbitrary measure space $ ( Y, {\cal A}, nu ) $ and $1 \le p
< \infty $ , $ 1 \le q \le \infty $ or $p = q = \infty$ , every
( surjective when $ p = q = \infty $ ) disjointness-preserving
bounded linear operator ( or linear isometry when $p \not = 2 ,
q \not = 2$) $T:L^p(X) \to L^q(Y)$ is of the Banach-Stone type,
i.e. $Tf = h \cdot (f \circ \varphi) $ for all $f$ in $L^p(X)$,
where $h$ is a scalar-valued measurable function defined on $Y$
and $ \varphi: Y \to X $ a measurable mapping. In this paper, a
rather complete answer of this problem is obtained. In particu-
lar, it is shown that every $\sigma$-finite measure space $( X,
{\cal B}, \mu)$, with $X$ a Dedekind complete separable totally
ordered space and $\cal B$ the order $\sigma$-algebra of $X$ ,
solves the Banach-Stone problem. And so do all their measurable
subspaces. Our results can be applied to show that ${\cal R}^n$
, separable Hilbert spaces, separable Banach spaces , separable
complete metrizable spaces, $\cdots$ , and all their measurable
subspaces solve the Banach-Stone problem. This extends a famous
result of Banach, which dealt with the case $1 \le p < \infty$,
$q = p \not=2$ and $X=Y=[0,1]$ for linear isometries.
|
author2 |
Ngai-Ching Wong |
author_facet |
Ngai-Ching Wong Wu-Lang Day 戴武郎 |
author |
Wu-Lang Day 戴武郎 |
spellingShingle |
Wu-Lang Day 戴武郎 On the Banach-Stone problem for $L^p$ spaces |
author_sort |
Wu-Lang Day |
title |
On the Banach-Stone problem for $L^p$ spaces |
title_short |
On the Banach-Stone problem for $L^p$ spaces |
title_full |
On the Banach-Stone problem for $L^p$ spaces |
title_fullStr |
On the Banach-Stone problem for $L^p$ spaces |
title_full_unstemmed |
On the Banach-Stone problem for $L^p$ spaces |
title_sort |
on the banach-stone problem for $l^p$ spaces |
url |
http://ndltd.ncl.edu.tw/handle/38855059175674524085 |
work_keys_str_mv |
AT wulangday onthebanachstoneproblemforlpspaces AT dàiwǔláng onthebanachstoneproblemforlpspaces AT wulangday zàilpkōngjiānshàngdebānáhèshǐdōngwèntí AT dàiwǔláng zàilpkōngjiānshàngdebānáhèshǐdōngwèntí |
_version_ |
1718352764616048640 |