Counting Bipartite Steinhaus Graphs

碩士 === 國立交通大學 === 應用數學研究所 === 82 === A Steinhaus matrix is a symmetric $0-1$ matrix $[a_{i,j}]_{n \times n}$ such that $a_{i,i}=0$ for $0 \leq i \leq n-1$ and $a_{i,j}=(a_{i-1,j-1}+a_{i-1,j}) \pmod 2$ for $1 \leq i<j \leq n-1$. A Steinha...

Full description

Bibliographic Details
Main Authors: Yueh-Shin, Lee., 李岳勳
Other Authors: Gerard J. Chang
Format: Others
Language:en_US
Published: 1994
Online Access:http://ndltd.ncl.edu.tw/handle/44889009486153797119
id ndltd-TW-082NCTU0507019
record_format oai_dc
spelling ndltd-TW-082NCTU05070192016-07-18T04:09:41Z http://ndltd.ncl.edu.tw/handle/44889009486153797119 Counting Bipartite Steinhaus Graphs 雙分斯坦郝斯圖的計數 Yueh-Shin, Lee. 李岳勳 碩士 國立交通大學 應用數學研究所 82 A Steinhaus matrix is a symmetric $0-1$ matrix $[a_{i,j}]_{n \times n}$ such that $a_{i,i}=0$ for $0 \leq i \leq n-1$ and $a_{i,j}=(a_{i-1,j-1}+a_{i-1,j}) \pmod 2$ for $1 \leq i<j \leq n-1$. A Steinhaus graph is a graph whose adjacency matrix is a Steinhaus matrix. In this paper, we present a new characterization of a graph to be a bipartite Steinhaus graph. From this characterization, we derive a fomula for the number $b(n)$ of bipartite Steinhaus graphs of order $n$. Gerard J. Chang 張鎮華 1994 學位論文 ; thesis 16 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立交通大學 === 應用數學研究所 === 82 === A Steinhaus matrix is a symmetric $0-1$ matrix $[a_{i,j}]_{n \times n}$ such that $a_{i,i}=0$ for $0 \leq i \leq n-1$ and $a_{i,j}=(a_{i-1,j-1}+a_{i-1,j}) \pmod 2$ for $1 \leq i<j \leq n-1$. A Steinhaus graph is a graph whose adjacency matrix is a Steinhaus matrix. In this paper, we present a new characterization of a graph to be a bipartite Steinhaus graph. From this characterization, we derive a fomula for the number $b(n)$ of bipartite Steinhaus graphs of order $n$.
author2 Gerard J. Chang
author_facet Gerard J. Chang
Yueh-Shin, Lee.
李岳勳
author Yueh-Shin, Lee.
李岳勳
spellingShingle Yueh-Shin, Lee.
李岳勳
Counting Bipartite Steinhaus Graphs
author_sort Yueh-Shin, Lee.
title Counting Bipartite Steinhaus Graphs
title_short Counting Bipartite Steinhaus Graphs
title_full Counting Bipartite Steinhaus Graphs
title_fullStr Counting Bipartite Steinhaus Graphs
title_full_unstemmed Counting Bipartite Steinhaus Graphs
title_sort counting bipartite steinhaus graphs
publishDate 1994
url http://ndltd.ncl.edu.tw/handle/44889009486153797119
work_keys_str_mv AT yuehshinlee countingbipartitesteinhausgraphs
AT lǐyuèxūn countingbipartitesteinhausgraphs
AT yuehshinlee shuāngfēnsītǎnhǎosītúdejìshù
AT lǐyuèxūn shuāngfēnsītǎnhǎosītúdejìshù
_version_ 1718351857326227456