Counting Bipartite Steinhaus Graphs
碩士 === 國立交通大學 === 應用數學研究所 === 82 === A Steinhaus matrix is a symmetric $0-1$ matrix $[a_{i,j}]_{n \times n}$ such that $a_{i,i}=0$ for $0 \leq i \leq n-1$ and $a_{i,j}=(a_{i-1,j-1}+a_{i-1,j}) \pmod 2$ for $1 \leq i<j \leq n-1$. A Steinha...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
1994
|
Online Access: | http://ndltd.ncl.edu.tw/handle/44889009486153797119 |
id |
ndltd-TW-082NCTU0507019 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-082NCTU05070192016-07-18T04:09:41Z http://ndltd.ncl.edu.tw/handle/44889009486153797119 Counting Bipartite Steinhaus Graphs 雙分斯坦郝斯圖的計數 Yueh-Shin, Lee. 李岳勳 碩士 國立交通大學 應用數學研究所 82 A Steinhaus matrix is a symmetric $0-1$ matrix $[a_{i,j}]_{n \times n}$ such that $a_{i,i}=0$ for $0 \leq i \leq n-1$ and $a_{i,j}=(a_{i-1,j-1}+a_{i-1,j}) \pmod 2$ for $1 \leq i<j \leq n-1$. A Steinhaus graph is a graph whose adjacency matrix is a Steinhaus matrix. In this paper, we present a new characterization of a graph to be a bipartite Steinhaus graph. From this characterization, we derive a fomula for the number $b(n)$ of bipartite Steinhaus graphs of order $n$. Gerard J. Chang 張鎮華 1994 學位論文 ; thesis 16 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立交通大學 === 應用數學研究所 === 82 === A Steinhaus matrix is a symmetric $0-1$ matrix $[a_{i,j}]_{n
\times n}$ such that $a_{i,i}=0$ for $0 \leq i \leq n-1$ and
$a_{i,j}=(a_{i-1,j-1}+a_{i-1,j}) \pmod 2$ for $1 \leq i<j \leq
n-1$. A Steinhaus graph is a graph whose adjacency matrix is a
Steinhaus matrix. In this paper, we present a new
characterization of a graph to be a bipartite Steinhaus graph.
From this characterization, we derive a fomula for the number
$b(n)$ of bipartite Steinhaus graphs of order $n$.
|
author2 |
Gerard J. Chang |
author_facet |
Gerard J. Chang Yueh-Shin, Lee. 李岳勳 |
author |
Yueh-Shin, Lee. 李岳勳 |
spellingShingle |
Yueh-Shin, Lee. 李岳勳 Counting Bipartite Steinhaus Graphs |
author_sort |
Yueh-Shin, Lee. |
title |
Counting Bipartite Steinhaus Graphs |
title_short |
Counting Bipartite Steinhaus Graphs |
title_full |
Counting Bipartite Steinhaus Graphs |
title_fullStr |
Counting Bipartite Steinhaus Graphs |
title_full_unstemmed |
Counting Bipartite Steinhaus Graphs |
title_sort |
counting bipartite steinhaus graphs |
publishDate |
1994 |
url |
http://ndltd.ncl.edu.tw/handle/44889009486153797119 |
work_keys_str_mv |
AT yuehshinlee countingbipartitesteinhausgraphs AT lǐyuèxūn countingbipartitesteinhausgraphs AT yuehshinlee shuāngfēnsītǎnhǎosītúdejìshù AT lǐyuèxūn shuāngfēnsītǎnhǎosītúdejìshù |
_version_ |
1718351857326227456 |