The Typenumber of the Lattice Graph
碩士 === 國立交通大學 === 應用數學研究所 === 82 === The $type$ of a vertex $v$ in a $p$-page book-embedding is the $p\times 2$ matrix of nonnegative integers \[ \begin{array}{c} \tau (v)\\ \end{array} = \left[ \begin{array}{cc} l_{v,1}& r_{v,1}\\ \vd...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
1994
|
Online Access: | http://ndltd.ncl.edu.tw/handle/02346763021534471123 |
id |
ndltd-TW-082NCTU0507018 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-082NCTU05070182016-07-18T04:09:41Z http://ndltd.ncl.edu.tw/handle/02346763021534471123 The Typenumber of the Lattice Graph 格子圖書式嵌入的型數 Yen-Chi Chen 陳彥吉 碩士 國立交通大學 應用數學研究所 82 The $type$ of a vertex $v$ in a $p$-page book-embedding is the $p\times 2$ matrix of nonnegative integers \[ \begin{array}{c} \tau (v)\\ \end{array} = \left[ \begin{array}{cc} l_{v,1}& r_{v,1}\\ \vdots & \vdots \\ l_{v,p}&r_{v,p}\\ \end{array} \ right], \] where $l_{v,i}$(respectively, $r_{v,i}$) is the number of edges incident to $v$ that connect on page $i$ to vertices lying to the left (respectively, to the right) of $v$. The $ typenumber $ of a graph $G,$ $T(G)$, is the minimum number of different types among all the book-embeddings of G. In this thesis, we shall consider the general properties of $typenumber$ and the $typenumber$ of some specific graphs. Mainly, we find an upper bound for lattice graph, $L_{m,n}$, and give exact solutions when $m\le 3$. In case that $m=2$ and $n\geq 3$, our result disprove the conjecture by J. Buss et.al. which says for $n\ge 4$, $T(L_{2,n})$ is not less than 5. Hung-Lin Fu 傅恆霖 1994 學位論文 ; thesis 23 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立交通大學 === 應用數學研究所 === 82 === The $type$ of a vertex $v$ in a $p$-page book-embedding is the
$p\times 2$ matrix of nonnegative integers \[ \begin{array}{c}
\tau (v)\\ \end{array} = \left[ \begin{array}{cc} l_{v,1}&
r_{v,1}\\ \vdots & \vdots \\ l_{v,p}&r_{v,p}\\ \end{array} \
right], \] where $l_{v,i}$(respectively, $r_{v,i}$) is the
number of edges incident to $v$ that connect on page $i$ to
vertices lying to the left (respectively, to the right) of $v$.
The $ typenumber $ of a graph $G,$ $T(G)$, is the minimum
number of different types among all the book-embeddings of G.
In this thesis, we shall consider the general properties of
$typenumber$ and the $typenumber$ of some specific graphs.
Mainly, we find an upper bound for lattice graph, $L_{m,n}$,
and give exact solutions when $m\le 3$. In case that $m=2$ and
$n\geq 3$, our result disprove the conjecture by J. Buss et.al.
which says for $n\ge 4$, $T(L_{2,n})$ is not less than 5.
|
author2 |
Hung-Lin Fu |
author_facet |
Hung-Lin Fu Yen-Chi Chen 陳彥吉 |
author |
Yen-Chi Chen 陳彥吉 |
spellingShingle |
Yen-Chi Chen 陳彥吉 The Typenumber of the Lattice Graph |
author_sort |
Yen-Chi Chen |
title |
The Typenumber of the Lattice Graph |
title_short |
The Typenumber of the Lattice Graph |
title_full |
The Typenumber of the Lattice Graph |
title_fullStr |
The Typenumber of the Lattice Graph |
title_full_unstemmed |
The Typenumber of the Lattice Graph |
title_sort |
typenumber of the lattice graph |
publishDate |
1994 |
url |
http://ndltd.ncl.edu.tw/handle/02346763021534471123 |
work_keys_str_mv |
AT yenchichen thetypenumberofthelatticegraph AT chényànjí thetypenumberofthelatticegraph AT yenchichen gézitúshūshìqiànrùdexíngshù AT chényànjí gézitúshūshìqiànrùdexíngshù AT yenchichen typenumberofthelatticegraph AT chényànjí typenumberofthelatticegraph |
_version_ |
1718351856744267776 |