Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio

碩士 === 國立交通大學 === 電信研究所 === 82 === Sinusoidal estimation in additive white noise is one of important problems in digital signal processing. In this thesis, techniques for estimating sinusoidal signals at low SNR are presented. Our approach...

Full description

Bibliographic Details
Main Authors: Kuen-Chang Lin, 林坤昌
Other Authors: Wen-Rong Wu
Format: Others
Language:en_US
Published: 1994
Online Access:http://ndltd.ncl.edu.tw/handle/14412882053276732682
id ndltd-TW-082NCTU0436015
record_format oai_dc
spelling ndltd-TW-082NCTU04360152016-07-18T04:09:39Z http://ndltd.ncl.edu.tw/handle/14412882053276732682 Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio 在低訊號雜訊比之下的弦波訊號估計 Kuen-Chang Lin 林坤昌 碩士 國立交通大學 電信研究所 82 Sinusoidal estimation in additive white noise is one of important problems in digital signal processing. In this thesis, techniques for estimating sinusoidal signals at low SNR are presented. Our approach is to apply conventional estimators in the subband domain. For block estimation, we choose the iterative filtering algorithm as the frequency estimator. For adaptive estimation, we use the prediction error filtering. Besides, we also propose a new type of adaptive LMS algorithm to reduce the influence of white noise. Simulation results show that sinusoidal estimation in the subband domain gives better performance than that in the full-band, and our new adaptive algorithm outperform the conventional ones. Wen-Rong Wu 吳文榕 1994 學位論文 ; thesis 67 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立交通大學 === 電信研究所 === 82 === Sinusoidal estimation in additive white noise is one of important problems in digital signal processing. In this thesis, techniques for estimating sinusoidal signals at low SNR are presented. Our approach is to apply conventional estimators in the subband domain. For block estimation, we choose the iterative filtering algorithm as the frequency estimator. For adaptive estimation, we use the prediction error filtering. Besides, we also propose a new type of adaptive LMS algorithm to reduce the influence of white noise. Simulation results show that sinusoidal estimation in the subband domain gives better performance than that in the full-band, and our new adaptive algorithm outperform the conventional ones.
author2 Wen-Rong Wu
author_facet Wen-Rong Wu
Kuen-Chang Lin
林坤昌
author Kuen-Chang Lin
林坤昌
spellingShingle Kuen-Chang Lin
林坤昌
Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio
author_sort Kuen-Chang Lin
title Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio
title_short Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio
title_full Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio
title_fullStr Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio
title_full_unstemmed Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio
title_sort sinusoidal signal estimation at low signal-to-noise ratio
publishDate 1994
url http://ndltd.ncl.edu.tw/handle/14412882053276732682
work_keys_str_mv AT kuenchanglin sinusoidalsignalestimationatlowsignaltonoiseratio
AT línkūnchāng sinusoidalsignalestimationatlowsignaltonoiseratio
AT kuenchanglin zàidīxùnhàozáxùnbǐzhīxiàdexiánbōxùnhàogūjì
AT línkūnchāng zàidīxùnhàozáxùnbǐzhīxiàdexiánbōxùnhàogūjì
_version_ 1718351717125324800