Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio
碩士 === 國立交通大學 === 電信研究所 === 82 === Sinusoidal estimation in additive white noise is one of important problems in digital signal processing. In this thesis, techniques for estimating sinusoidal signals at low SNR are presented. Our approach...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
1994
|
Online Access: | http://ndltd.ncl.edu.tw/handle/14412882053276732682 |
id |
ndltd-TW-082NCTU0436015 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-082NCTU04360152016-07-18T04:09:39Z http://ndltd.ncl.edu.tw/handle/14412882053276732682 Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio 在低訊號雜訊比之下的弦波訊號估計 Kuen-Chang Lin 林坤昌 碩士 國立交通大學 電信研究所 82 Sinusoidal estimation in additive white noise is one of important problems in digital signal processing. In this thesis, techniques for estimating sinusoidal signals at low SNR are presented. Our approach is to apply conventional estimators in the subband domain. For block estimation, we choose the iterative filtering algorithm as the frequency estimator. For adaptive estimation, we use the prediction error filtering. Besides, we also propose a new type of adaptive LMS algorithm to reduce the influence of white noise. Simulation results show that sinusoidal estimation in the subband domain gives better performance than that in the full-band, and our new adaptive algorithm outperform the conventional ones. Wen-Rong Wu 吳文榕 1994 學位論文 ; thesis 67 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立交通大學 === 電信研究所 === 82 === Sinusoidal estimation in additive white noise is one of
important problems in digital signal processing. In this
thesis, techniques for estimating sinusoidal signals at low SNR
are presented. Our approach is to apply conventional estimators
in the subband domain. For block estimation, we choose the
iterative filtering algorithm as the frequency estimator. For
adaptive estimation, we use the prediction error filtering.
Besides, we also propose a new type of adaptive LMS algorithm
to reduce the influence of white noise. Simulation results show
that sinusoidal estimation in the subband domain gives better
performance than that in the full-band, and our new adaptive
algorithm outperform the conventional ones.
|
author2 |
Wen-Rong Wu |
author_facet |
Wen-Rong Wu Kuen-Chang Lin 林坤昌 |
author |
Kuen-Chang Lin 林坤昌 |
spellingShingle |
Kuen-Chang Lin 林坤昌 Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio |
author_sort |
Kuen-Chang Lin |
title |
Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio |
title_short |
Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio |
title_full |
Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio |
title_fullStr |
Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio |
title_full_unstemmed |
Sinusoidal Signal Estimation at Low Signal-to-Noise Ratio |
title_sort |
sinusoidal signal estimation at low signal-to-noise ratio |
publishDate |
1994 |
url |
http://ndltd.ncl.edu.tw/handle/14412882053276732682 |
work_keys_str_mv |
AT kuenchanglin sinusoidalsignalestimationatlowsignaltonoiseratio AT línkūnchāng sinusoidalsignalestimationatlowsignaltonoiseratio AT kuenchanglin zàidīxùnhàozáxùnbǐzhīxiàdexiánbōxùnhàogūjì AT línkūnchāng zàidīxùnhàozáxùnbǐzhīxiàdexiánbōxùnhàogūjì |
_version_ |
1718351717125324800 |